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SUMMARY 

The problem of the missing heritability hinders our understanding of the relationship between 

genetic markers and complex quantitative traits, in turn limiting informed selection of mates for 

animal breeding purposes. To this end, we have developed epinetr, a software package for R 

designed to facilitate the investigation of the possible contribution of gene interaction networks to 

the missing heritability. 

 

INTRODUCTION 

Since the advent of the genome-wide association study (GWAS) in 2005 (Haines et al. 2005; 

Vissler et al. 2012), thousands of genetic variants have been identified which contribute to complex 

traits in either livestock (Tenghe et. al. 2016) or humans (Li et al. 2016), with an application for 

livestock being a genetically-informed artificial selection for desirable traits. However, a gap 

emerged between current heritability estimates for these traits and the contribution of the identified 

variants: the so-called “missing heritability” problem (Manolio et al. 2009; Zuk et al. 2014). Several 

explanations were put forth to explain this disparity (Manolio et al. 2009; Eichler et al. 2010); among 

these, the effect of epistasis (i.e. gene-gene interaction) on heritability estimates is an explanation 

that has attracted considerable attention (Huang 2012; Zuk et al. 2012; Bloom et al. 2013). 

Simulations are currently the most viable approach to test epistatic models and how they affect our 

estimates of additive genetic variance (Hoban et al. 2012). 
There is thus a need in animal breeding for flexible simulators that can accommodate a wide 

variety of randomly-generated and user-generated epistatic models while still providing parameters 

to control other factors. As an aid to further research on the genetic architecture of epistasis, a need 

also exists for a network-based approach to epistatic modelling in simulators. To this end, we have 

developed epinetr, a package for the statistical environment R, soon to be submitted to CRAN: 

epinetr is a forward-time simulator designed specifically for the study of high-order epistatic 

networks and how they impact estimates of genetic parameters and selection decisions of complex 

quantitative traits. 

This paper first gives an overview of the design decisions behind epinetr, it then discusses the 

epinetr simulator itself, the features and parameters within the simulator and its ability to handle 

complex epistatic networks. 
 

DESIGN CONSIDERATIONS 

The two broad categories of population genetics simulators form a simple dichotomy: simulators 

that work forwards-in-time and those that work backwards-in-time (Hoban et al. 2012). As can be 

inferred from the nomenclature, forwards-in-time (or forward-time) simulators start with a 

population and work forwards to track individuals and pedigrees via selection, recombination and 

mutation across generations; on the other hand, backwards-in-time (or coalescent) simulators work 

backwards to infer genetic histories. Forwards-in-time simulators demand more computational 

resources than backwards-in-time simulators simply due to the level of granularity required (i.e. per-

individual simulation); at present, forwards-in-time simulators include Easypop (Balloux 2001), 
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GenomePop (Carvajal-Rodríguez 2008) and FREGENE (Chadeau-Hyam 2008), none of which 

include mention of epistatic modelling capabilities in the associated literature. Both simuPOP (Peng 

and Kimmel 2005) and quantiNemo (Neuenschwander 2008) are forwards-in-time simulators that 

do allow for statistical epistatic modelling; the same is true for the more recent simulator SELAM 

(Corbett-Detig and Jones 2016). 
Backwards-in-time simulators such as SNPsim (Posada and Wiuf 2003), SIMCOAL2 (Laval and 

Excoffier 2004), GENOME (Liang et al. 2007) and MaCS (Chen et al. 2009) are typically more 

computationally efficient than forwards-in-time simulators, but there is a trade-off: they are not as 

suited to modelling complexity or natural or artificial selection (Hoban et al. 2012). This limits their 

application to the study of epistatic impact on selection for complex traits. 

Existing outside this dichotomy is EpiSIM (Shang 2013), which allows for the simulation of 

simple 2-way interactions. 

The choice was made to build a forward-time simulator, as this allowed for the use of complex 

selection scenarios. As a further consideration, there is evidence to suggest that epistatic networks 

exhibit a small world or scale-free structure (Tyler et al. 2009; Mackay 2014). While this appears to 

be a fruitful avenue to pursue, a more general point emerges: the actual network structure may be 

the key to understanding the underlying mechanics of epistasis, including the relationship between 
genes and phenotypes. For this reason, epinetr includes the ability to both automatically generate 

random and scale-free epistatic networks or alternatively input user-defined epistatic networks that 

can be generated by an external model based on previous knowledge (or a hypothesis) of the 

underlying architecture of a trait. 

In a nutshell, the epinetr package is designed as a tool to investigate potential epistatic sources 

of missing heritability using network models. 

 

PACKAGE FEATURES 

The epinetr package is written for the R statistical software environment, allowing for complex 

analysis to take place in the same environment as the actual simulation. It includes a set of classes 

that enable users to perform common operations both before and after the simulation with simple 
commands, as well as provisions for specifying a large set of population parameters. 

Typically, there are 5 broad steps in the workflow: 

1. Define population parameters and construct the initial population 

2. Attach additive effects to the population 

3. Attach an epistatic network to the population and visualise the network 

4. Run a forward-time simulation of the population and plot the simulation run 

Parameters are specified using a simple parameter file. Below we give an overview of the 

parameter options available. 

Population size, given at initialisation, is fixed throughout the simulation run. However, because 

litter size is specified by a user-defined probability mass function, some generations may be smaller 

than the fixed population size. For this reason, another pair of parameters controlling the maximum 

lifespans of sires and dams may be violated. 
Allele frequencies can be inferred from a haplotype file or specified directly, thus allowing for 

“sideways simulation” (by first using a coalescent simulator to arrive at the allele frequencies); 

alternatively, haplotypes can be used directly as the initial population. 

Both broad- and narrow-sense heritability can be specified, controlling the contributions of 

additive, epistatic and environmental effects to the overall variance of the trait being studied. 

Selection is performed either randomly or via linear ranking; the mutation rate is a single number 

while recombination probabilities can be optionally specified, thus allowing for the simulation of 

hotspots. Separate truncation rates for sires and dams can also be specified, as can an initial burn-in 

period of random selection. 
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A chromosomal map for the single nucleotide polymorphisms (SNP) is required, with the user 

determining which SNP are used for quantitative trait loci (QTL) in the epistatic network; 

alternatively, the user can specify the number of QTL which are then selected from the SNP at 

random. 

The number of times a sire can mate during a single generation can be specified. 
Once a population is generated using the above parameters, additive effects across all SNP can 

then be attached. Effect sizes (i.e. the absolute value of the coefficients) are determined by the 

restrictions of the population parameters; however, they can be sampled from any distribution 

specified by the user, including user-defined functions. 

Epistatic modelling. By specifying an incidence matrix (with each row representing a QTL and 

each column representing an interaction between QTL), the user can determine the structure of the 

epistatic network; alternatively, the system can generate a random or scale-free network for the 

population with a single command. In either case, the orders of interaction included in the network 

are specified by the user and limited only by the number of QTL in the population; in addition, scale-

free networks can be given a minimum number of interactions per QTL. 

 
Figure 1. Three unique scale-free epistatic networks generated automatically from within 

epinetr: a) a 20-QTL network comprised of 2-way interactions; b) a 20-QTL network 

comprised of 2-, 3- and 4-way interactions; and c) a 100-QTL network comprised of 2-, 3-, 4- 

and 5-way interactions. 

 
The network structure can be easily visualised using a simple plot command. Figure 1 depicts 

three potential epistatic scale-free networks generated automatically and visualised from within 

epinetr. 

The result of a simulation run is a set of files giving allele frequencies and pedigrees for each 

individual in each generation, as well as haplotypes for each individual in the final generation (or, 

optionally, each generation). Most importantly, the additive, epistatic and environmental 

contribution to each individual’s phenotype is given as an output. Finally, the mean, maximum and 

minimum phenotypic values within the population across generations can also be easily plotted 

using a single command. 

 

CONCLUSION 
epinetr is an R package designed to facilitate the modelling and analysis of epistatic networks 

and their effects on estimates of genetic parameters and selection decisions within populations, 

filling an important niche in population genetics simulation. It is hoped that it will be a valuable tool 

to better understand how different models of genetic architecture, particularly epistasis, relate to the 

problem of missing heritability. 
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