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SUMMARY 

Single-step genomic evaluations combine pedigree and phenotypic information on genotyped 

and non-genotyped individuals. Such an evaluation can be undertaken using a so-called breeding 

value model that fits the breeding values of the genotyped and non-genotyped animals (e.g. single-

step GBLUP) or using an equivalent so-called marker effects model that directly fits the marker 

effects. The single-step marker-effects models allow alternatives such as BayesA and mixture 

models such as BayesB, BayesC or BayesR to be fitted in the context of the single-step analysis. 

This paper reviews alternative formulations of these equivalent models.  The marker-effects 

formulations of the models are practical options for national genomic evaluations.  The most 

efficient algorithm among those available depends upon the number of marker loci and the 

numbers of genotyped and non-genotyped animals.  

 

INTRODUCTION 

The classical model equation for genetic evaluation using best linear unbiased prediction 

(BLUP) describes the phenotypes for one or more traits in terms of fixed effects, random additive 

breeding values, and residual effects that capture that part of the phenotype that cannot be 

explained by the fixed effects or breeding values (Henderson, 1973).  Estimation of breeding 
values by fitting the mixed linear model typically assumes the pedigree-based additive relationship 

matrix describes the variance-covariance among breeding values (Henderson, 1973).  Henderson 

(1974) suggested the model equation might be rearranged for computational advantage as 

explicitly demonstrated in Henderson (1985).  That concept was exploited by Quaas and Pollak 

(1980) in their derivation of the multiple-trait reduced animal model which allowed an animal 

model to be fitted with little more effort than that for fitting the sire-maternal grandsire models that 

were commonly used at that time.  Nejati-Javeremi et al. (1997) showed how to compute a 

genomic relationship matrix and suggested that be used in place of the additive relationship 

matrix, a model now known as GBLUP.  Meuwissen et al. (2001) proposed several models that 

explicitly fitted haplotype effects rather than breeding values.  Those methods varied according to 

whether the variance ratio for haplotype effects was a known constant (BLUP), an unknown 

haplotype specific variable (BayesA, BayesB), and whether or not some haplotypes were assumed 
to have zero effect (BayesB). The breeding value model and BLUP marker effects models were 

shown to be equivalent (e.g. Stranden and Garrick, 1997).  Expanding GBLUP to a more general 

setting with a model that appropriately accounts for a pedigree including genotyped and non-

genotyped animals in a single step was introduced by Legarra et al. (2009).  That single-step 

GBLUP (ss-GBLUP) model represented a major advance, and is computationally attractive when 

there are many more markers than genotyped animals, and all markers are weighted equally to 

form the genomic relationship matrix. Two marker-effects models are reviewed here which are 

equivalent to ss-GBLUP and practical for national evaluation. Both allow the model for marker 

effects to be extended when variance ratios are marker specific and unknown (like BayesA), or 

follow more general mixture models (BayesB, or BayesR of Erbe et al. 2012). 
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EQUIVALENT MODELS FOR JOINT USE OF GENOTYPED AND NON-GENOTYPED 

ANIMALS 

Single-step GBLUP.  Defining a vector of phenotypic records as yi, incidence matrices of 

fixed effects and breeding values as Xi and Zi, vectors of unknown fixed effects (b), random effects 

(ui) and residuals ei, with the subscript i denoting g=genotyped or n=non-genotyped animals, the 
model equation can be written as 

 [
𝒚𝒏

𝒚𝒈
] = [

𝑿𝒏

𝑿𝒈
] 𝒃 + [

𝒁𝒏 𝟎
𝟎 𝒁𝒈

] [
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] + [

𝒆𝒏

𝒆𝒈
], with 𝑣𝑎𝑟 [

𝒆𝒏

𝒆𝒈
] = [

𝑹𝒏 𝟎
𝟎 𝑹𝒈

],  

and following Legarra et al. (2009) with the genetic variance being 𝜎𝑢
2, 

 𝑯 =
1
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2 𝑣𝑎𝑟 [
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], 

which is somewhat formidable.  However, Aguilar et al. (2010) showed that, for full-rank G, 

𝑯−𝟏 = [
𝑨𝒏𝒏 𝑨𝒈𝒏

𝑨𝒏𝒈  𝑨𝒈𝒈 + (𝑮−𝟏 − 𝑨𝒈𝒈
−𝟏)],  

which allows existing software used to obtain breeding values in national evaluations using PCG 

iteration (e.g. Tsuruta et al. 2001) to be relatively trivially modified by including an extra step to 

compute matrix-vector products for the difference matrix (𝑮−𝟏 − 𝑨𝒈𝒈
−𝟏).  This ss-GBLUP approach 

was computationally appealing in the early days of genomic prediction, when there were fewer 

than 40,000 animals genotyped.  As the number of genotyped animals increased, the effort to form 

the dense difference matrix and compute its matrix-vector products increase rapidly.  Various 

strategies to avoid that effort have been devised and implemented, including computing matrix-

vector products in parts as (𝑮−𝟏 − 𝑨𝒈𝒈
−𝟏)𝒙 = 𝑮−𝟏𝒙 − 𝑨𝒈𝒈

−𝟏𝒙. Using properties of partitioned matrix 

inverses allows efficient computation of the product  𝑨𝒈𝒈
−𝟏𝒙 without ever forming 𝑨𝒈𝒈

−𝟏 (Masuda et 

al. 2017). An approximation known as APY (Misztal et al. 2014) has been used to compute the 

matrix product 𝑮−𝟏𝒙.  That approximation can in some cases give identical values as for  𝑮−𝟏𝒙 
computed directly, but the lower bounds for APY in general circumstances have not been 

established.   

Single-step GBLUP with marker effects.  There are several practical alternatives for fitting 

the single-step model that do not require 𝑮−𝟏, nor even require 𝑮 to be full rank, and these 
equivalent models have the additional advantage that they can accommodate various priors for 

marker effects, allowing single-step models for marker effects akin to BayesA, BayesB and 

BayesR that cannot be fitted using ss-GBLUP.  

Liu et al. (2014) rearranged the model to include equations for the marker effects, 𝜶, in 

addition to the breeding values of genotyped and non-genotyped individuals. An advantage of that 

representation is that it does not require the matrix 𝑮, nor its inverse.  However, it involves the 

inverse of the matrix 𝑨𝒈𝒈, which is dense.  A computational strategy was proposed to avoid 

computing the inverse, but it requires solving a dense system of equations of order equal to the 

number of non-genotyped animals, and such solution is required every round of PCG or for every 

Gibbs sample if a model with Bayesian priors for marker effects is to be fitted.  We will not 

consider that representation further. 

Hybrid model.  Fernando et al. (2014) wrote 𝒖𝒈 = 𝑴𝒈𝜶 as in Meuwissen et al. (2001) where 

𝑴𝒈 are marker covariates observed on genotyped animals, and partitioned 𝒖𝒏 into two 

components, that part of the breeding values of non-genotyped animals that can be explained by 

the breeding values of genotyped relatives, and an independent part (imputation error, 𝝐) not 

explained by those relatives.  That is, 𝒖𝒏 = 𝑴𝒏𝜶 + 𝝐, where non-genotyped marker covariates are 

“imputed” using best linear prediction as 𝑴𝒏 = 𝑨𝒏𝒈𝑨𝒈𝒈
−𝟏 which can be obtained efficiently by 

directly solving the sparse set of equations 𝑨𝒏𝒏𝑴𝒏 = −𝑨𝒏𝒈𝑴𝒈 and is easily done in parallel. The 
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resulting “hybrid” model equation is therefore written as  

 [
𝒚𝒏

𝒚𝒈
] = [

𝑿𝒏

𝑿𝒈
] 𝒃 + [

𝒁𝒏𝑴𝒏 𝟎
𝟎 𝒁𝒈𝑴𝒈

] 𝜶 + [
𝒁𝒏

𝟎
] 𝝐 + [

𝒆𝒏

𝒆𝒈
],  

which is solved by fitting mixed model equations that explicitly include effects for 𝜶 and 𝝐. 

Defining the variance of the vector of marker effects as 𝑰𝜎𝛼
2, the inverse variance-covariance 

matrix for these effects required to form the mixed model equations are  

 𝑣𝑎𝑟−1 [
 𝜶
𝝐

] = [
𝑰 1

𝜎𝛼
2 𝟎

𝟎 𝑨𝒏𝒏 1

𝜎𝑢
2

].  

The calculations involving 𝑀𝑛 which appears in the off-diagonal of the mixed model equations 

become formidable when that dense matrix is large, as is the case when there are millions of non-

genotyped animals and a large number of markers, but that effort can be reduced when the number 

of genotyped animals is much less than the number of non-genotyped animals by exploiting the 

identity 𝑨𝒏𝒏𝑴𝒏 = −𝑨𝒏𝒈𝑴𝒈 and storing only 𝑴𝒈 as detailed in Fernando et al. (2016a).  

Implementing that approach requires repeated solving of sparse equations of the form 𝑨𝒏𝒏𝒙 = 𝒒 

within each PCG iteration.  This effort is akin to that required to implement the approach of 

Masuda et al. (2017) in ss-GBLUP.  If the variance components 𝜎𝛼
2 or 𝜎𝑢

2 are assumed not to be 
known, and/or if mixture priors are to be used for marker effects, this hybrid model can be readily 

fitted using single-site Gibbs sampling, a model that does not have an equivalent ss-GBLUP form. 

 Super hybrid model.  A further equivalent model involving marker effects can be derived as 

in Fernando et al. (2016b). In circumstances where the number of genotyped animals may be 

large, perhaps millions, it can be efficiently implemented for national evaluation, especially if 

there are more genotyped than non-genotyped animals.  The model equation is written as 

 [
𝒚𝒏

𝒚𝒈
] = [

𝑿𝒏

𝑿𝒈
] 𝒃 + [

𝟎
𝒁𝒈𝑴𝒈

] 𝜶 + [
𝒁𝒏

𝟎
] 𝒖𝒏 + [

𝒆𝒏

𝒆𝒈
],  

which is solved by fitting a mixed model involving 𝜶, as in the hybrid model, along with 𝒖𝒏 as in 

ss-GBLUP.  We refer to this model here as the super-hybrid model.  The inverse variance-

covariance matrix for the fitted effects is given by 

 𝑣𝑎𝑟−1 [
 𝜶
𝒖𝒏

] = [
𝑰 1

𝜎𝛼
2 + 𝑴𝒏′𝑨𝒏𝒏𝑴𝒏

1

𝜎𝑢
2 𝑴𝒈′𝑨𝒈𝒏 1

𝜎𝑢
2

𝑨𝒏𝒈𝑴𝒈
1

𝜎𝑢
2 𝑨𝒏𝒏 1

𝜎𝑢
2

], 

which only involves the matrix of imputed marker genotypes 𝑴𝒏 in a quadratic form on the 

diagonal, and that symmetric matrix has order equal to the number of markers which in national 

evaluations can nowadays be an order of magnitude less than the number of genotyped 

individuals.  Comparison of the computing effort in this super-hybrid model relative to the hybrid 

model for a national cattle evaluation dataset is in Fernando et al. (2016b). 

All of these equivalent models, namely ss-GBLUP which fits breeding values for non-
genotyped and genotyped animals, the ss-GBLUP model with breeding values and marker effects, 

the hybrid model which fits marker effects and imputation residuals for non-genotyped animals, 

and the super-hybrid model which fits marker effects and breeding values for non-genotyped 

animals, can be extended to more complex forms of models.  These include those that fit 

additional polygenic effects not captured by markers, those that fit maternal genetic and maternal 

permanent environmental effects, and those accommodating multiple traits, those with repeated 

measures, those including random regression polynomials, those with heterogeneous variances, in 

addition to breed, heterosis and group effects as required in multi-breed analyses.  

 

DISCUSSION 

The two marker effects models reviewed here are equivalent to ss-GBLUP when the genomic 

relationship matrix is full rank and the variance parameters are known.  These marker-effects 
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models may require greater computational effort than ss-GBLUP when the number of genotyped 

animals is small.  The relative effort for the hybrid model that fits marker effects and imputation 

residuals for non-genotyped animals, compared to the super-hybrid model that fits marker effects 

and breeding values for non-genotyped animals, varies according to the number of markers and 

numbers of genotyped and non-genotyped animals.  For analyses involving millions of genotyped 
animals, one or other or both of the marker effects models will be more efficient than ss-GBLUP.  

Implemented in a Gibbs sampler, these models can readily accommodate alternative priors 

including those representing mixture distributions, which in some situations leads to higher 

accuracy of prediction than ss-GBLUP (Lee et al. 2017). Furthermore, using Gibbs sampling will 

provide samples from the relevant posterior distributions which can be used to provide estimates 

of the prediction error variances and prediction error covariances, as well as the posterior means 

that represent the estimates of the breeding values.  Both of these marker effects models have been 

prototyped in multi-breed multiple-trait national evaluations including maternal effects.  The 

super-hybrid model is currently being implemented in the Pan-American Cattle Evaluation 

(PACE) run by ABRI for Hereford cattle, and in the North American multi-breed analysis run by 

International Genetic Solutions (IGS) which is the largest North American evaluation in terms of 

pedigree size.  The super-hybrid model is also being used by global companies for pig, chicken 
and dairy cattle evaluation.  
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