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SUMMARY 

We describe an analytical pipeline to exploit the results from RNA sequencing (RNA-Seq) 

experiments combining a series of processes from data normalization to network inference. The 

pipeline makes use of numerical approaches aimed at identifying key regulators via the regulatory 

impact factor (Reverter et al. 2010) metrics. It also employs the partial correlation and an 

information theory (Reverter and Chan 2008) for the identification of significant edges in the 

construction of gene co-expression networks. Key nodes in the network include differentially 

expressed genes, transcription factors, tissue specific genes as well as genes harboring SNPs found 

to be associated with the phenotype(s) of interest. The pipeline has already been successfully 
employed in two beef cattle studies, dealing with the onset of puberty and feed efficiency. In the 

present paper, we describe a pipeline to analyze RNA-Seq data, focus on relevant genes, generate 

gene co-expression networks and identify emerging clusters within the network to provide new 

insight about the subject matter under scrutiny.  

 

INTRODUCTION 

Gene expression is the process which transferring the information of the gene into the 

production of a functional product. Genes may be expressed at specific tissue or only at certain 

physiological state in the animal life cycle. By measuring the abundance of gene products (RNA 

transcripts) in a tissue at a specific physiological state, the gene expression rate can be evaluated. 

Using gene expression analysis to identify candidate genes and biomarkers could ultimately 
enhance the accuracies of genomic prediction for key traits.  

RNA sequencing (RNA-Seq) is a next-generation sequencing technique developed in 2008 for 

the analysis of gene expression across the entire transcriptome (Mortazavi et al. 2008; Wang et al. 

2009). RNA-Seq was first applied in model organisms including Arabidopsis (Lister et al. 2008), 

yeast (Nagalakshmi et al. 2008) and mouse (Mortazavi et al. 2008), but has rapidly increased its 

popularity to a number of other organisms including human (Sultan et al. 2008) and bovine 

(Huang and Khatib 2010). RNA-seq is high-throughput and the analysis of large-scale datasets has 

a wide range of applications, however, every RNA-seq experimental scenario may have different 

optimal methods for analyses. New approaches are currently being developed (Han et al. 2015). 

Here we provide a step-by-step recipe on how to use the pipeline to analyze RNA-Seq data, focus 

on relevant genes, generate gene co-expression networks and identify emerging clusters within the 

network to provide insight about the subject matter under scrutiny. Without entering in detailed 
numerical intricacies (published elsewhere and cited herein), we discuss the essential principles of 

the analytical methods of each step in the process. 

 

METHODS 

In what follows, we provide a step-by-step recipe on how to exploit RNA-Seq data in order to 

identify differential expressed genes, key regulatory genes and generate gene co-expression 

network, in combination with algorithms such as RIF (Reverter et al. 2010) and PCIT (Reverter 

and Chan 2008). Figure 1 provides a schematic of the flow chart for this analytical pipeline. 
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Generally, the pipeline used for the analysis of multi-omics data requires a series of four steps as 

follows: 

Step 1 – RNA-Seq Experimental Resource. In order to infer differentially expressed genes and 

gene co-expression networks in our multi-omics pipeline, the following resources are required: 1) 

the RNA-Seq data comprising at least two experimental conditions; 2) the experiment data 
conducting at least in two tissues. In the puberty example, the two experimental conditions would 

be the pre- or post-puberty stages; while the reproductive tissues of interest could include 

hypothalamus, pituitary, ovaries and uterus, as well as tissues related to the onset of puberty such 

as liver, fat and muscle. Other experimental setting could include healthy versus disease states, 

various breeds and/or various time points as conditions.  

Step 2 – Normalization via Mixed-Model Equations. The ability of mixed-models in terms of 

their power to accommodate covariance structures in various forms is well documented in the 

animal breeding and genetics literature. Similarly, mixed-models are the ideal tool for the 

normalization of gene expression data (Reverter et al. 2005). Aiming for parsimony the simplest 

model will contain the library as the only fixed effect, and the interaction effect of gene by animal 

by condition by tissue and the residual as the only random effects: 

 
  Y = Library + Gene + Gene*Animal*Condition*Tissue + Error 

 

The solution of the Gene*Animal*Condition*Tissue (GACT) interaction are used as the 

normalized mean expression (NME) of each gene in each animal and tissue. However, 

combinations of lower order gene interactions, such as Gene*Animal, Gene*Condition and 

Gene*Tissue are also possible. Additionally, the GACT solutions for all the animals from the same 

condition could be averaged to obtain the NME of each gene in each condition and tissue. The 

NME values will provide the basis for the computation of differential expression and tissue-

specificity.  

Step 3 – Selection of ‘Relevant’ Genes. To facilitate the task of generating and analysing the 

resulting network, only a subset of genes will be used according to the following four categories: 
differentially expressed (DE) genes, tissue-specific (TS) genes, genes harbouring SNP reported to 

be associated with a phenotype or phenotypes of relevance, and significant regulators such as 

transcription factors (TF). Next, we briefly describe the way in which each category is identified. 

Differentially expressed (DE) genes. Typically, the contrast of interest will be comprised of the 

(possibly differential) expression of a given gene in a given tissue across the two (or more) 

conditions under study. These can be obtained directly from the NME and the statistical inference 

on the contrast performed based on a number of approaches of which a simple t-test is quite 

possibly optimal, preferably after correction for multiple testing using either Bonferroni or 

(preferably) Benjamini and Hochberg methods (both described in (Benjamini and Hochberg 

1995)). 

Tissue specificity. Similarly, the NME can be used to reveal the expression of each gene in each 

tissue and then compute the proportion of a gene’s total expression in each of the tissues (ie. based 
on the NME of a gene in a tissue divided by the sum of the NME of the same gene summed across 

all tissues). This could be done either within or across the two (or more) conditions under study. In 

doing so, tissue-specific (TS) genes will be identified from those genes whose expression in a 

given gene is higher than in any other tissue by a particular amount such as fold-based bearing in 

mind that a gene can be TS for one tissue only. Additionally, using comparative genomics from 

human studies, we can source the identity of TS genes from the Tissue-specific Gene Expression 

and Regulation database (TIGER: http://bioinfo.wilmer.jhu.edu/tiger/). 

Genes harbouring associated SNP. Today there is a plethora of GWAS in the literature quite 

possibly studying a condition similar (even identical) to the one in our current study. The results 

http://bioinfo.wilmer.jhu.edu/tiger/
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from these studies can be mined to retrieve the genes surveyed in our RNA-Seq study that are 

reported to harbour SNP associated with a phenotype or condition similar or preferably identical to 

the one in our current study. 

 

 

 

 

 

 

Figure 1. Flow chart of the pipeline for the RNA sequencing analysis (left) and illustrations 

adapted from Canovas et al. (2014) in the context of the onset of puberty in Brangus heifers 

 

Key regulators. In order to identify the regulators (not necessarily TF) present among the genes 

surveyed in our RNA-Seq study, we mine to the Animal Transcription Factor Database 

(http://www.bioguo.org/AnimalTFDB/). Among these, we define as significant or “key” regulators 

those with statistically significant RIF metrics (using DE, TS and SNP harbouring genes as 

targets) and/or those with binding motif in the promoter region of DE, TS and/or SNP harbouring 

genes. In more detail, RIF comprises a set of two metrics designing to evaluate the regulatory 

power of molecules by exploring their differential connectivity to other influential genes (eg. those 

differentially expressed) in two contrasting conditions of interest (eg. pre- and post-puberty). 
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Step 4 – Network Inference and Visualisation Analysis. 

For the network inference, we use the DE, TS, key TF and SNP harbouring genes as nodes and 

significant connections are identified using the partial correlation and information theory (PCIT) 

algorithm either through the original FORTRAN90 source code (Reverter and Chan 2008) or 

through an R package (Watson-Haigh et al. 2010). The PCIT exploits the twin concepts of partial 
correlation and mutual information. In brief, PCIT ascertain the significance of a given correlation 

between 2 entities (e.g., genes or network nodes) after accounting for all other genes in the dataset.  

Importantly, the output from PCIT can be viewed with Cytoscape (Shannon et al. 2003), a 

software program for analysing and visualizing gene co-expression network. In order to 

characterize network features, many Cytoscape plug-ins are available. Of these plug-ins, we 

recommend MCODE (Bader and Hogue 2003) to identify highly interconnected gene clusters, and 

BINGO (Maere et al. 2005) to determine which Gene Ontology terms are significantly 

overrepresented in a set of clustered genes. Hopefully, these clusters may have biological 

significance within the context of the phenotype under study. 

One final process in the analysis of the resulting network is to identify the best trio of TF among 

those spanning the majority of the network topology. To this end, we search for TF with lots of 

connections in the network but few in common as these indicate redundancy. 
 

CONCLUSIONS 

The biological complexity and the rapid accumulation of publicly data arise the need to 

develop efficient tools for large-scale multi-dimensional data analysis. We conclude that the 

proposed analytical pipeline is a useful procedure providing an opportunity screen and identify key 

regulatory genes as well as generate regulatory networks with predictive power for the phenotype 

under investigation. Therefore, it may also be a significant tool for integrating different RNA-seq 

dataset and different levels omics data in order to investigate the complexity of biological subjects. 
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