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SUMMARY 

Single step genomic BLUP (SS-GBLUP) for BREEDPLAN beef cattle evaluations is currently 

being tested for implementation across a number of breeds.  A genomic data pipeline has been 

developed to enable efficient analysis of the industry-recorded SNP genotypes for incorporation in 

SS-GBLUP analyses. Complex data collection, along with format and/or naming convention 

inconsistencies challenges efficient data processing. This pipeline includes quality control of 

variable formatted data, and imputation of genotypes, for building the genomic relationship matrix 

required for implementation into single step evaluation. 

 

INTRODUCTION 

Genomic information from high density SNP panels has been incorporated into the Australian 
beef cattle genetic evaluation system, BREEDPLAN, since 2011, by “blending” EBVs from the 

standard analysis with direct genomic values (DGVs) from independent genomic prediction 

analyses using selection index theory. The ultimate goal has been to include all available 

information including pedigrees, phenotypes, and genotypes in a single analysis, known as single 

step genomic BLUP (Legarra et al. 2014).   

One of the major practical challenges for including genomic information in genetic evaluations 

has been the development of scalable data-management systems (Swan et al. 2012) which can 

handle the increasing number of genotypes with increasing density of SNPs (Johnston et al. 2012).  

Quality control of the data becomes increasingly important, as inclusion of genotypes raises 

questions with regards to existing pedigree and potential breed.  This paper describes the data 

pipeline developed for incorporating genomic information into SS-GBLUP analyses for 
BREEDPLAN, from on-farm DNA collection, through data quality control and building the 

genomic relationship matrix (GRM), to implementation within single step evaluation. 

 

INDUSTRY DATA STRUCTURE 

The genomic pipeline from sampling DNA on-farm to genomic evaluation is the most complex 

data recording process involved in genetic evaluation, and is regularly subject to errors. Samples 

are often handled by several people at different points in the pipeline, genotyping can be carried 

out by a number of different research and commercial entities using a variety of platforms, and 

ensuring data consistency has proved difficult.  

Currently, Australian beef cattle genetic evaluations are organised individually by breed 

societies using databases that are maintained by the Agricultural Business Research Institute 

(ABRI) in most cases and using BREEDPLAN evaluation software licenced to ABRI (Graser et 

al. 2005), apart from Angus Australia who maintain their own database.  At the time of writing, 

the role of the Animal Genetics and Breeding Unit (AGBU) within the single step genomic 

pipeline is to collate genotypes from various breed societies and construct a GRM which is used in 
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single step evaluations conducted routinely by ABRI. In future it is intended for the pipeline to be 

incorporated into the recording and processing at breed societies and ABRI for routine SS-GBLUP 

evaluation. 

 

GENOMIC DATA PROCESSING 

The genomic pipeline begins upon receiving raw genotypes from a genotyping lab (Figure 1). 

The DNA sample must be assigned to an animal ID, usually provided by the breed society, either 

by name, society ID, or BREEDPLAN database number. This process has significant issues with 

regards to mismatching of samples to animals, particularly with historic data. Often issues with 

animal identities (e.g. additions/changes to suffix/prefix, duplicate names, etc.) has meant DNA 

samples have been attributed to the wrong animal. Thus far this has been a major hurdle in the 

roll-out of SS-GBLUP, as animals with simple identity changes/errors, which in turn lead to 

pedigree errors, will be rejected from the GRM downstream. Ensuring consistent sample 

identification is critical but not always successful.   

 
Figure 1. Genomic pipeline flow chart. 

DATA QUALITY CONTROL 

For quality assurance purposes, raw genotypes should be provided with GenCall (GC) scores 

for each SNP and a SNP map file to ensure consistency across SNP panels. The SNP maps may be 

used for imputation and checking recombination events, and allow the genotypes to be readily 

converted to a consensus 150K wide format genotype. The 150K formats allow consistency across 

all genotypes regardless of panels/chips, and enable high-throughput data management and quality 

control. 

With a consistent format across all genotypes, the data undergoes a quality control (QC) 

analysis, with filters including average GC score, missing SNPs, SNPs with low GC scores, and 

allele frequencies. Animals are removed from the dataset used to construct the GRM based on the 

following criteria:  

- Less than 79% calls with a GC score > 0.6 

- More than 20% missing SNPs on the observed panel 

- Average GC score less than 0.6 

- Sire or dam younger than 550 days (based on recorded pedigree and date of birth) 

- More than 50% SNPs heterozygous  

- Minor and major allele frequencies are higher than 80% or lower than 20% 

- Inconsistency between assigned sex and genotype determined sex 



 

 

In each case, where a genotype fails due to poor data quality, the sample/animal is flagged with 

the breed society and/or lab for either re-genotyping the sample or re-sampling if possible. 

A 4K subset of SNPs consistent across all panels is used as a further check for the animal’s 

suitability for the GRM, checking for breed composition, parentage/pedigree, and duplicate 

genotypes (greater than 90% similarity). Currently the GRM is built for purebred animals only, 
and as such only animals with a minimum 80% of a single breed proportion (Boerner 2017) are 

included. At this point, any obvious pedigree errors will be identified and either corrected or the 

animals will be removed from the dataset. Animals failing to meet the required criteria of the data 

QC will be rejected from the GRM dataset, and provided a diagnostic code describing the cause of 

rejection. An example of the number of genotypes removed from a GRM dataset after quality 

control filters are applied is shown in Table 1.  

 

IMPUTATION 

In some instances, multiple genotypes of half-sib families with the same sire are available, 

enabling the sire’s genotype to be imputed. Previous studies have shown that the imputation 

accuracy depends on the SNP density and the number of half-sibs for that sire (Ferdosi et al. 

2014). Although un-genotyped sires with small half-sib families can be imputed, the imputed 

genotype will contain considerable amount of missing markers and the accuracy of imputation will 

be low. For inclusion in the GRM dataset, half-sib families larger than 11 individuals were 

considered for sire imputation, with imputation and haplotyping methods similar to those 

implemented in the “hsphase” algorithm (Ferdosi et al. 2014). The phased offspring are retained in 

a haplotype library for FImpute (Sargolzaei et al. 2014). SNP loci with more than 80% missing 

genotypes across animals are removed, and the missing SNPs are imputed using the haplotype 

library and the corrected pedigree. 

 

Table 1. Number of genotypes removed from a GRM dataset after quality control process 

 
Quality control filter Number of genotypes 

Total  12169 

Less than 79% SNPs with GC score above 0.6 167 

More than 20% SNPs missing 4 

Average GC score less than 0.6 8 

Extreme major/minor allele frequencies (>80% and <20%) 15 

Breed proportion less than 80% 489 

Duplicate genotype and sample id - multiple platforms 730 

Duplicate genotype - different sample id 21 

Duplicate sample id - different genotype 7 

Inconsistent sex (pedigree vs genotype) 82 

Incorrect sire or dam 282 

 

GENOMIC VS PEDIGREE RELATIONSHIP QUALITY CONTROL  

The GRM is built using VanRaden’s method 1 (VanRaden 2008). With the inclusion of 

genomic information, previously unidentified relationships are discovered. These relationships 

may simply be previously unknown or not recorded, or may be an artefact of inbreeding within the 

population. Regardless of the reason, the additional information provided by the GRM to identify 

relationships not seen in the NRM will increase the accuracy of EBVs.  

However, there will also be discrepancies between genomic and pedigree relationships, most 

likely due to incorrect recording; even well recorded herds have a fraction of their calves (3-5%) 

with incorrect pedigree (Johnston et al. 2012). It is possible that the recorded sire of an animal 
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appears ‘disproven’ using genomic information, in which case there are a number of possible 

scenarios. The recorded pedigree may be incorrect, or the genotype sample may be of the wrong 

animal (e.g. sampling mix up, sample identity error, etc.). The issue is knowing which scenario is 

correct. There are a number of actions possible with the information available:  

- Ignore the genotype and continue with the pedigree relationship (i.e. genotype wrong) 

- Use the genotype to fix the pedigree relationship (i.e. pedigree wrong) 

- Remove animal (i.e. uncertain whether pedigree or genotype is correct). 

If the genomic relationship is ignored, a new genotype and/or sample should be requested. If 

the pedigree is corrected based on the genotype, this correction must be performed at the breed 

society level. It is possible that additional genotyping may change the GRM over time, as more 

half-sib relationships become available and new pedigree discrepancies will appear, or animals 

may be re-genotyped. In some instances, duplicate genotypes will occur, whereby the sample ID 

are the same, and the genotypes different; or the genotypes are the same, but the sample IDs are 

different. In these instances, it is difficult to identify which is correct, and as such both genotypes 

are unrecoverable. Table 1 provides an example of the number of genotypes removed from a GRM 

dataset after identifying duplicate samples and pedigree errors.  

There are a number of assumptions in the building of the GRM with respect to using an 

unselected base population with little inbreeding, which can affect the genomic relationships 

(VanRaden 2008). Thus the issue of genomic and pedigree relationship discrepancies remains 

contentious, as the ‘correct’ action is not always obvious. 

 

CONCLUSIONS 

Increasing use of high density genomic information has the potential to improve the accuracy 

of genetic evaluations, and rates of genetic gain in the beef industry.  This must be supported with 

efficient data pipelines which automate the quality control and analysis of genotypic data for 

inclusion into routine genetic evaluations. The genomic pipeline described here aims to do this, 

though difficulties arise due to complex data recording processes, multiple sample/data handling 

points, multiple laboratories, commercial entities and breed societies. Carefully structured and 

consistent data handling among the various participants will enable a smooth transition to 

SS-GBLUP, providing a repeatable, traceable, and auditable process, which is documented to 

ensure the highest quality and to identify changes over time for the Australian beef industry.  
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