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SUMMARY 

Genomic selection uses genomic information to predict the breeding value of animals and can 
achieve higher prediction accuracy than pedigree based selection. This study aimed to compare the 

accuracy of genomic prediction using a medium-density (50k) SNP panel, as well as an imputed 

high-density (600k) SNP panel, with and without including pre-selected SNPs from QTL regions 

identified by regional heritability mapping (RHM). The proportion of variance explained by the pre-

selected SNPs combined in a genomic relationship matrix (GRM) was considerably smaller than 

that explained by all SNPs from the 600k panel (25% of the genomic heritability).  To obtain a better 

estimate of the variance explained by the pre-selected SNPs, both GRMs from the pre-selected SNPs 

( 𝐺𝑅𝑀𝑠) and their complementary SNPs from the 600k panel ( 𝐺𝑅𝑀𝑐) were fitted in a single model. 

The total heritability explained by both 𝐺𝑅𝑀𝑠 and 𝐺𝑅𝑀𝑐 when fitted together was similar to the 

heritability explained by fitting all SNPs in a single GRM. The  𝐺𝑅𝑀𝑠 explained a smaller proportion 

(18%) of the total heritability, whereas the  𝐺𝑅𝑀𝑐 explained 82%. Fitting either the 50k or the 600k 

SNP panels resulted in similar prediction accuracy for parasite resistance (~0.37). However, when 

both  𝐺𝑅𝑀𝑠 and 𝐺𝑅𝑀𝑐 were fitted together in the prediction model, genomic accuracy was increased 

by 10%. These results indicate that accuracy of genomic prediction can be improved by including 

QTL information explicitly in the prediction models.  

 

INTRODUCTION 

Traditional genetic improvement relies on the use of pedigree information and phenotypic 

records of farm animals to estimate their breeding values. This has led to substantial genetic gain in 
most livestock species, especially for the traits that are easy to measure. However, the process is 

often inefficient for low-heritable, expensive or difficult to measure traits. An example is parasite 

resistance, measured by indicator traits such as worm egg counts (WEC), which is an important 

health issue that affects the sheep industry worldwide. Genomic selection offers an alternative to 

conventional breeding programs and can increase the rate of genetic gain by using genomic 

information to predict the breeding values of selection animals (Hayes et al., 2009).  

In genomic selection, the genomic breeding values (GBV) for selection candidates are predicted 

based on the estimates of marker effects across the whole genome. The accuracy of predicting 

genomic breeding values depends on the heritability of the trait, the size of the reference population 

and the level of relatedness between the reference population and selection candidates (Habier et al., 

2010). Moreover, the accuracy is highly influenced by the level of linkage disequilibrium between 
the SNP markers and the QTL (quantitative trait loci) affecting the trait (Goddard 2009). Depending 

on the genetic architecture of the trait, the chosen statistical method used to build the prediction 

model will have a significant impact on prediction accuracy. Models that incorporate pre-selected 

SNPs from QTL regions have been shown to improve the accuracy of genomic prediction (Brondum 

et al. 2015).   

The objective of this study was to compare the accuracy of genomic prediction based on a 

medium-density (50k) SNP panel, high-density (600k) SNP panel, and including pre-selected SNPs 
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from QTL regions identified by regional heritability mapping for parasite resistance in Australian 

sheep.  

 

MATERIALS AND METHODS 

Animals. Parasite resistance, as measured by WEC, was investigated in a multi-breed sheep 
population from the Sheep Cooperative Research Centre information nucleus flock (INF). A total of 

7,539 animals with both genotype data and WEC phenotypes were included in this analysis. Various 

breeds were represented in the population (Table 1) but with a significant proportion of Merino 

sheep, and only this breed had a substantial proportion of purebred animals. The remaining breeds 

were mainly represented by their crosses with Merino (van der Werf et al. 2010).  

 

Table 1. Proportions of different breeds in the population 

 

Breed BL COR COOP EF WD PD TEX AF PS MER 

Proportion (%) 11.1 0.8 10 0.7 0.4 1.8 2.3 2 1.1 69.8 

Border Leicester: BL, Corriedale: COR, Coopworth: COOP, East Friesian: EF, White 

Dorper:WD,  Poll Dorset: PD, Texel: TEX, Australian Finnsheep: AF, Prime Samm: PS, 

Merino:MER 

 

  Genotypes. Animals were genotyped using the 50k Ovine marker panel (Illumina Inc., 
SanDiego, CA, USA). SNPs were removed if they had a minor allele frequency (MAF) < 1%, an 

Illumina Gentrain score (GC) less than 0.6, a call rate less than 95%, or not in Hardy-Weinberg 

equilibrium. Furthermore, positions of SNPs were obtained from the latest sheep genome 

Ovis_aries_v3.1, and any SNP with unknown position was removed. After applying these quality 

measures, 7,539 animals and 48,198 SNPs were retained. The imputation from the medium-density 

panel to the high-density (HD) SNP panel was performed using the Fimpute algorithm (Sargolzaei 

et al. 2014). 

Cross-validation experimental design.  Animals were randomly split into ten non-overlapping 

subsets (i.e. each subset with ~ 753 animals). For each experiment, one of the ten subsets served as 

a validation population and the remaining of the data served as the training population. The whole 

process was repeated ten times so that each subset served once as the validation population.  
Regional heritability mapping (RHM).  RHM was performed ten times, once for each 

validation set. The input to RHM consists of phenotype and genotype data (600k SNPs) on animals 

in the combined nine training sets. Data on animals in the validation set was not included in the 

RHM input. In RHM, each chromosome was divided into regions of pre-defined number of SNPs, 

and the variance attributable to each region was estimated. Window size of 200 SNPs was used to 

build genomic relationship matrix (GRM) and the window was shifted every 100 SNPs so that each 

two adjacent windows overlap midway. The significance was evaluated by the likelihood ratio test 

(LRT), comparing the RHM model which includes the regional effect with the base model composed 

of mean, fixed effects and random animal and error terms, but without the regional effect. The base 

model (1) and the RHM model (2) fitted to the data were as follows: 

 

𝒚 = 𝑿𝒃 + 𝒁𝒂 + 𝒆     (1) 

𝒚 = 𝑿𝒃 + 𝒁𝒂 + 𝒁𝟐𝒈 + 𝒆     (2) 

 

where y is a vector of cube root transformed WEC records; b is a vector of fixed effects; 𝒂 is a 

vector of random additive genetic effects, 𝒈  is a vector of random regional genetic effect estimated 

from SNPs within each region (window), 𝒆 is a vector of residuals which was assumed to be 

distributed as ~𝑁(0, 𝐼𝜎𝑒
2), where 𝝈𝒆

𝟐 is the residual variance.  X, Z and 𝑍2 are incidence matrices 
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relating fixed, additive genetic and regional genetic effects to phenotypes. 𝒂 was assumed to be 

distributed as ~  𝑁(0, 𝐴𝜎𝑎
2) ,  where 𝑨 is the numerator relationship matrix (NRM) calculated from 

deep pedigree records and 𝝈𝒂
𝟐 is the additive genetic variance explained by pedigree; and  𝒈 was 

assumed to be distributed as 𝑁(0, 𝐺𝜎𝑔
2), where  𝐺 is the regional genomic relationship matrix 

constructed from SNPs within each region, and 𝜎𝑔
2 is the regional genomic variance. The fixed 

effects included in the models were breed proportions, age of animals, age of dam, gender, rearing 

type × birth type and contemporary groups (combination of flock site, birth year and management 

group effects).  

Selection of SNP markers. Genomic regions obtained from each of the ten-fold cross-validation 

RHM analyses were ranked based on their LRT and significant regions were selected. For each fold, 

the top five ranked regions across the ten-fold experiments were the same. SNPs located within the 

top five ranked regions were used to build a GRM ( 𝐺𝑅𝑀𝑠) and the proportion of the variance 
explained by these pre-selected SNPs was estimated by replacing the NRM in model (1) by the GRM 

obtained from the pre-selected SNPs. Variance was not only estimated using the GRM for the 

selected SNPs, but also by using a complementary GRM ( 𝐺𝑅𝑀𝑐) based on the remaining SNPs 

from the 600k SNP panel. To obtain a better estimate of the variance explained by the selected SNPs, 

both the   𝐺𝑅𝑀𝑠 and  𝐺𝑅𝑀𝐶 were fitted together in the same model. 

Accuracy of genomic prediction. To evaluate the impact of the selected SNPs on prediction 

accuracy, genomic predictions for the validation animals was calculated and correlated with the 

phenotypes of the same animals. The  𝐺𝑅𝑀𝑠was fitted and the genomic best linear unbiased 

prediction (GBLUP) analysis was performed. The prediction model that includes both  𝐺𝑅𝑀𝑠 and 

 𝐺𝑅𝑀𝑐 was also evaluated. Genomic breeding values (GBV) were calculated following the ten-fold 

cross-validation procedure as described above. Prediction accuracy was calculated as the correlation 

between the predicted GBVs of the validation set and the adjusted phenotypes, which were corrected 

for fixed effects, divided by the square root of the trait heritability. Furthermore, the regression 

coefficient (slope) of the adjusted phenotypes on the GBVs was calculated to assess the bias of 

genomic predictions. 

 

RESULTS AND DISCUSION 
The RHM results for ten-fold experiments are shown in the Manhattan plots in Figure1. The top 

five ranked regions remained consistent across the ten-fold cross-validation experiments. These five 

regions include three windows (107 -108 Mb, 110 -112 Mb, 117 -118 Mb) on OAR2, three 
overlapping windows between 28 to 36 Mb on OAR6, a window between 17 to 18 Mb on OAR18, 

a window between 7.2 to 6.8 Mb on OAR20 and a window between 40 to 41 Mb on OAR24. 1600 

SNPs located within these regions were selected to build a GRM and, the heritability explained by 

the pre-selected SNPs was 0.05 compared to 0.19 explained by all the SNPs from the 600k panel. 
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Figure 1. Manhattan plots of regional heritability mapping (RHM) results across the ten-fold cross-

validation experiments. The x-axis represents the number of windows and the y-axis represents the 

corresponding likelihood ratio test (LRT) for each window.  
 

Another way of testing the importance of the pre-selected SNPs was to investigate how much 

heritability was lost when the pre-selected SNPs were excluded from the GRM. Fitting only 𝐺𝑅𝑀𝐶, 

containing all SNPs in the 600k panel minus the pre-selected SNPs from the target regions, resulted 

in a similar heritability estimate as fitting all the SNPs. To assess the relative importance of the GRM 

from the selected SNPs and the GRM from the remaining SNPs, both  𝐺𝑅𝑀𝑠 and  𝐺𝑅𝑀𝐶 were fitted 

simultaneously in the same model. The proportion of variance explained when both  𝐺𝑅𝑀𝑠  and 

 𝐺𝑅𝑀𝐶 were fitted simultaneously was similar to the proportion of the genetic variance explained 

by fitting all the SNPs from the 600k. The GRM from the selected SNPs explained 18% of the total 

heritability, whereas 82% of the total heritability was explained by all the remaining SNPs (Table 

2).  

Table 2. The proportion of phenotypic variance (h2) explained for parasite resistance 

 

Selection criteria GRM  𝑮𝑹𝑴𝒔  𝑮𝑹𝑴𝑪 logL 

G (50k) 0.178 ± 0.020   -10673 

G(600k) 0.194 ± 0.021   -10670 

G(regions)  0.050 ± 0.009  -10682 

GRMc   0.188 ± 0.021 -10673 

G(Regions)+GRMc  0.034 ± 0.008 0.152 ± 0.021 -10638 

G (50k): GRM from the 50k SNP panel, G (600k): GRM from the 600k SNP panel, G (regions): 

 𝐆𝐑𝐌𝐬  from the pre-selected SNPs; GRMc: complementary GRM (GRMc)  

 

Using any of the 50k and the 600k SNP panels resulted in a similar prediction accuracy for 

parasite resistance (~0.37, Table 3). When the  𝐺𝑅𝑀𝑠 from the pre-selected SNPs was fitted alone, 
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the prediction accuracy dropped by 18% compared to fitting all SNPs from the 600k panel. However, 

when both  𝐺𝑅𝑀𝑠 and  𝐺𝑅𝑀𝐶 were fitted together, higher prediction accuracy was observed than 

fitting all the SNPs in a single GRM. This is likely because a model with two components of genetic 

effects allows effects of the pre-selected SNPs to have larger variance than all the remaining SNPs 

in the panel, thus putting more weight on the pre-selected SNPs from the QTL regions. Moreover, 
the slopes of all models were not significantly different from 1, which indicates no significant bias 

in the predictions. It should however be noted that the RHM regions are not independent since they 

were the same across all 10-fold repeats and this can of course favourably influence the prediction 

accuracy. While suboptimal for a fair comparison of accuracy of prediction this lack of 

independence is not unexpected nor undesirable in practice since QTLs should have a real biological 

effect on a trait and are expected to be consistently identifiable in different datasets with similar 

power. If the RHM regions changed with each subset of the data, there would be greater cause for 

concern.          

 

Table 3. Cross-validation prediction accuracy for parasite resistance averaged over the ten 

validation sets, and slope for the regression of adjusted phenotypes on the predicted breeding 

values 

Selection criteria Accuracy SE(accuracy) Slope SE(slope) 

G (50k) 0.368 0.036 0.915 0.197 
G(600k) 0.374 0.036 0.916 0.193 

G(regions) 0.307 0.035 0.841 0.219 
G(Regions)+GRMc 0.411 0.036 0.848 0.164 

 

CONCLUSION 

The results in this study show that there is little advantage of using the imputed high density SNP 

panel over the medium-density panel for genomic prediction with this trait. However, by 

incorporating information from QTL regions explicitly into the genomic prediction model, 

prediction accuracy of parasite resistance increased by 10% based on the current SNP panel density. 

These results suggest that QTL information should be beneficial in genomic prediction, not just for 

parasite resistance but also for other economically important traits in sheep.  
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