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Summary

Accounting for population stratification in genotype samples is important to avoid false
inference from genome wide association studies. It is usually quantified using model-based
ancestry estimation (e.g. ADMIXTURE; Alexander et al. (2009)), which has disadvan-
tages with regard to model assumptions and processing time. This article describes a two
step procedure for estimating population stratification. In the first step a spacial cluster
algorithm is used to detect clusters of genetically homogeneous animals. In a subsequent
step genotypes are described as linear functions of within-cluster allele frequencies. The
approach was tested on a cattle data set which consisted of 11,639 real genotypes from 11
breeds and 5,000 artificially generated cross-bred genotypes (F1 to F5). It outperformed
results obtained from ADMIXTURE in terms of speed and accuracy.

Introduction

Results from genome wide association studies (GWAS) can be negatively affected by pop-
ulation stratification (Marchini et al., 2004; Price et al., 2010). It is therefore necessary to
quantify the latter and expand the fitted model by a related factor. Two major approaches
are used for this purpose. The first approach estimates genome proportions of sampled
genotypes conditional on a predefined number of ancestral populations, and is embed-
ded in software like STRUCTURE (Pritchard et al., 2000) and ADMIXTURE (Alexander
et al., 2009). This approach yields biologically meaningful results at the individual and
population level, but results can only be incorporated into GWAS in a subsequent analy-
sis. The second approach performs a singular value decomposition of the matrix of genetic
markers and performs GWAS within the Eigen-space. This approach is used in the soft-
ware EIGENSTRAT (Price et al., 2006). However, it is not obvious how to interpret
principal components in terms of ancestral population allele frequencies and individual
genome proportions.

This article describes a two step procedure for estimating population stratification
which exploits properties of the singular value decomposition, provides biologically in-
terpretable results, and is fast even when the number of markers per genotype is huge.
Results were compared to those obtained from ADMIXTURE.
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Methods

In the first step a spacial cluster algorithm was used to decide whether individual geno-
types should belong to a cluster or should be regarded as “noise”. In the second step a
non-linear optimisation approach (BREEDCOMP; Boerner (2017)) was used to describe
an animal’s genotype as a linear function of within-cluster allele frequencies.

The cluster analysis step used the OPTICS algorithm for spacial clustering (Ankerst
et al., 1999) and was carried out on a Euclidean distance matrix K of dimension Na×Na

where Na is the total number of genotyped animals. K was constructed from a matrix P
of dimension Na × 50. P was obtained from DR[1 : Na, 1 : 50]. D and R were matrices
obtained from the singular valued decomposition Z = LDR, where Z is an matrix of
marker genotypes of dimension Na × Nm where Nm is the number of markers. OPTICS
requires no further input parameter and yields a list of ordered data points. This list
is subsequently cut into cluster and “noise” where the cutting process requires a single
external input parameter (MPT). MPT is the minimum number of points to regard a
point aggregation as a cluster and is evaluated along the radius around data points. As a
result of an increasing radius the number of clusters increases and the “noise” decreases.
However, beyond a certain radius the number of clusters will shrink again, thus forming
a distinctive curve with a clear maximum. In the second step genome proportions were
estimated using the approach of Boerner (2017). The problem to solve can be written as
Z ′ = FQ′+E. F is an Nm×Nk matrix of within-cluster allele frequencies where Nk is the
number of clusters, Q is a Na×Nk matrix of the animals’ genome proportions, and E is an
Nm×Na matrix of non-explainable residuals. Assuming that animals are independent the
above equation may be solved by minimising trace(E ′E). Thus, for animal i it becomes:
argminQi,:

f(Qi,:) = E ′
:,iE:,i − 2Zi,:FQ′

i,: + Qi,:F
′FQ′

i,:. To obtain meaningful results the
parameter space of values in Qi,: must be constrained to Qi,: ≥ 0 {i = 1, .., Nk} and∑Nk

j Qi,j = 1.
The above combination of algorithms was tested on a cattle data set which consisted

of 11,639 individuals from 11 different breeds (Brahman (1,492), Angus (1,473), Murray
Grey (316), Limousin (1,395), Charolais (899), Hereford (1,500), Simmental (337), Short-
horn (1,126), Wagyu (1,497), Santa Gertrudis (1,474) and Droughtmaster (130)). Because
genotypes of these animals were from various SNP panels, the analyses were based on a
set of 4,022 SNP in common across all panels. Five generations of cross-bred animals were
generated from these pure-bred animals (F1 to F5). To generate the F1 individuals, 2,000
pure-bred parents were randomly chosen to form 1000 sire-dam pairs where their hap-
lotypes were obtained by random phasing, and gametes were formed using 25 randomly
located cross-overs. Haplotypes and genotypes of offspring were generated by gamete
union. To generate the F2 to F5 individuals, the 2,000 parent genotypes were selected
from the previous 1,000 offspring implying more than one offspring per parent. Thus,
the total number of artificially admixed offspring was 5,000 and the total data set size
was 16,639. All computations were carried out on an desktop computer with an Intel(R)
Core(TM) i7-3770 processor and 32GB of memory.

Results and Discussion

The first step for both ADMIXTURE as well as the OPTICS -BREEDCOMP cascade
was the correct determination of the number of founder populations. When OPTICS was
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(a) Number of clusters (black) and the

propotion of animals regarded as
crosses (red) when using the OPTICS
cluster algorithm.
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(b) ADMIXTURE cross-validation param-
eter as a measure to find the optimum
number of populations

Figure 1: Population detection characteristics of OPTICS and ADMIXTURE
used the maximum number of populations could be easily inferred because the number
of clusters as a function of the cluster radius formed a distinct curve (see Figure 1).
Contrarily, no inference could be made from the ADMIXTURE cross-validation approach
because the relevant parameter was still decreasing even with the number of populations
set to 20. With the MPT parameter set to 100, OPTICS generated 405 cluster solutions
of which 27 had 11 clusters. However, the composition of these 27 solutions differed
only slightly with correlations between within-cluster allele frequencies >0.999. Since
ADMIXTURE could not detect an optimum number of populations, subsequently the
relevant parameter was regarded as prior knowledge and set to 11. But even then the true
population allele frequencies correlated less to those estimated by ADMIXTURE than to
the within-cluster allele frequencies generated from OPTICS results with 11 clusters (see
Table 1). Individual genome composition results from ADMIXTURE were compared
to BREEDCOMP results where the latter used an arbitrary OPTICS solution with 11
clusters to calculate within-cluster allele frequencies. Genome proportions estimated by
BREEDCOMP correlated to the true genome proportions with 0.99, whereas genome
proportions estimated by ADMIXTURE reached a correlation of 0.84 only. This is also
reflected in the maximum difference between the estimated and true genome proportions
which was 0.4 and 0.99 for BREEDCOMP and ADMIXTURE, respectively.

The OPTICS -BREEDCOMP cascade also outperformed the ADMIXTURE unsu-
pervised mode in terms of speed. An unsupervised ADMIXTURE run with the number of
populations equal to 11 needed 45 real time minutes. In comparison, OPTICS provided all
405 solutions given in Figure 1a in 22 real time seconds. A BREEDCOMP run for a single
OPTICS solution needed about 30 real time seconds to estimate the genome composition
of all 16,639 animals. Thus, it is possible to run OPTICS and evaluate approximately 90
cluster solutions in the time necessary for a single ADMIXTURE run. In addition, it is
worthwhile noting that this difference in speed is accentuated as the number of markers
per genotype and the number of genotyped animals increases. For an unbiased compari-
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Table 1: Correlations between the allele frequencies of the 11 populations estimated by
OPTICS and ADMIXTURE and the allele frequencies of the true populations.

true population

1 2 3 4 5 6 7 8 9 10 11

OPTICS 1 1 1 1 1 1 0.999 1 1 1 1

ADMIXTURE 0.999 0.982 0.994 0.999 0.991 0.964 0.83 0.99 0.954 0.995 0.984

OPTICS 0.314 0.639 0.394 0.844 0.675 0.639 0.839 0.754 0.556 0.675 0.599

ADMIXTURE 0.25 0.529 0.318 0.533 0.628 0.539 0.7 0.572 0.869 0.596 0.52

true 0.315 0.639 0.394 0.839 0.675 0.639 0.839 0.75 0.556 0.675 0.599

Upper part: maximum of the correlations between the allele frequencies of the true population and the
allele frequencies of all the suggested populations. Middle part: Second largest correlation between the
allele frequencies of the true population and the allele frequencies of all the suggested populations. Lower
part: maximum off-diagonal values from a correlation matrix between true population allele frequencies.
son one would also have to account for the run time of the ADMIXTURE cross-validation
procedure, which was 18 hours for this data set.

Beside speed and accuracy differences, the key difference between ADMIXTURE and
the OPTICS -BREEDCOMP cascade is that OPTICS tries to detect point aggregation
in Rn whereas ADMIXTURE moves vectors of allele frequencies through Rn until all data
points are best explained. ADMIXTURE appears to be useful even for samples containing
cross-bred animals only. However, a stabilised cross will occur as point aggregation as
well and will attract ADMIXTURE to place a population allele frequency vector within
or at least very close to it leading to false inference. By contrast OPTICS can only be
applied if it can be assumed that at least a part of the genotype sample is from pure-breed
animals.
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