
Proceedings of the World Congress on Genetics Applied to Livestock Production, 11.127

On implied genetic effects, relationships and alternate allele coding

Bruce Tier, Karin Meyer & Andrew A. Swan

Animal Genetics and Breeding Unit, University of New England, Armidale, NSW 2351, Australia

Summary

This paper examines some of the implied effects commonly assumed when building relationship
matrices. We propose the inclusion of an additional ‘individual’ in the genomic relationship
matrix which models the mean of the founder population. It is shown that this resolves the
problem of inconsistent prediction error variances due to alternate allele coding schemes.
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Introduction

Together with the genetic variance, relationships between animals are essential to model co-
variances among individuals when estimating genetic parameters or predicting breeding values
(EBVs). In the absence of genomic information, relationships are based on co-ancestry (identity
by descent or IBD) using the numerator relationship matrix (A). High density tests for single
nucleotide polymorphisms (SNPs) have been available for many years and now young animals
are tested routinely for tens of thousands of loci. Commonly, these data are 0, 1 or 2, the number
of copies of one of two possible alleles at a given locus. They can be used to build a genomic
relationship matrix (G) which is based on identity by state (IBS). Important parameters required
when building G are the allele frequencies (pF) for each locus in the founder population.

To their surprise, Forni et al. (2011) found that applying alternate allele codings did not
necessarily affect relative EBVs. Strandén & Christensen (2011) further showed that, other
than a change in mean, coding of alleles had no effect on EBVs but did affect prediction error
variances (PEVs) and accuracies. Tier et al. (2015) demonstrated that there are infinite variety of
G matrices that provide the ‘same’ EBVs.

This paper illustrates the implied genetic group in A and the implied founder in G which
are generally disregarded. We show that the latter can explain a number of observed phenomena
and that inclusion of the implied founder results in consistent PEVs and accuracies.

The implied genetic group in A

We generally assume that founder animals are a random sample of a huge population that has
been mating randomly and has an infinite number of loci. The consequence of this is that the part
of A that corresponds to founders is modeled with an identity matrix. This says that each founder
has two unique gametes that are not shared by any other animals (they are not inbred and the
covariances between founders is zero). Having renumbered animals from 1 to n such that parents
have lower numbers than their progeny, A with elements ai j can be built one row (column) at a
time as aii = 1+ 0.5asd and a ji = 0.5

(
a js + a jd

)
= ai j for i > j and s and d the parents of animal

i.
The inverse A−1 is required when estimating genetic parameters or predicting breeding

values. Following Henderson (1976) it is commonly built directly, one animal at a time, by
accumulating contributions to elements akl (of A−1) relating to itself (i), its sire (s) and its dam



(d): These contributions are

mi/4 to ass, asd, ads and add (parent - parent)
−mi/2 to ais, aid, asi and adi (parent - individual)

mi to aii (individual) where mi = (1 − 0.25(ass + add))
−1

(1)

In the original formulation, when one or both parents are unknown the corresponding terms are
omitted in (1). However, by considering unknown parents to be ’phantom’ animals (Westell et al.,
1988) with the number 0, all contributions could be made by augmenting A−1 with a zeroeth row
and column. This equation can be, and usually is, omitted and consequently its solution in any
analysis is zero. This zeroeth row represents the implied genetic group in A. Consequently each
animal’s EBV can be considered as the sum of a genetic group effect (of zero) and it’s deviation
from that group effect, as in a model with a single genetic group included.

The implied founder animal in G

Consider the linear model y = Xb +Wu + e, where the data (y) are a function of fixed (b) and
random animal (u) effects and a residual (e). X and W denote the pertaining incidence matrices.
Random effects u and e are assumed to have null means and variances σ2

gG andσ2
e In, respectively,

with G as given below (3) and In an identity matrix of size n. Mixed model equations (MME) are(
X′X X′W
W′X W′W +G−1σ2

e /σ
2
g

) (
b̂
û

)
=

(
X′y
W′y

)
(2)

Let C denote the coefficient matrix in (2). PEVs are proportional to the diagonal elements (cii)
of C−1. The accuracy for animal i is then ri =

√
1 − ciiσ2

e /(giiσ
2
g ), with gii the i−th diagonal

element of G.
The genomic relationship matrix is generally built using VanRaden’s (2008) first method:

G = (Z − 2P) (Z − 2P)′ /t (3)

where Z is an (n) animal by (g) genotype matrix with elements 0, 1 or 2 which represent the
number of copies of one of the two alleles at each animal-locus element, P = 1np′ is a matrix
with rows p′, the vector of allele frequencies and 1n a unity vector of size n with the scaling factor
t, commonly calculated as 2p′(1n − p). Conceptually, vector p is equal to pF – the frequencies in
the founder population – but it is usually derived from the observations. However, any vector
can be used to form P in the numerator of (3): choice of p affects how allele counts are centered
which can be thought of as equivalent to altering allele coding. For instance, using p = 0.5
changes coding from 0, 1 and 2 to −1, 0 and 1 which can be computationally advantageous.

We can augment G with an implied founder, analogous to the implied genetic group for A,
by adding an animal (treated as animal “0” or A0 from here on), which models the mean of the
founder population. This involves adding a row in Z with values equal to twice the (assumed)
allele frequencies for pF . The resulting EBVs depend on the choice of p to form P – for p = pF ,
its solution is zero (and G is not positive definite as elements pertaining to A0 are 0). For p , pF ,
we can adjust the EBVs of (actual) animals by subtracting the mean of the founders, yielding
v̂i = ûi − û0. In matrix terms

v̂ =
[
−1n

... In
]
û? = Q û? with û?′ =

[
ûo
... û′

]
(4)



Let subscripts ‘F’ and ‘, F’ denote matrices constructed using p = pF and p , pF , respectively.
Matrix Q provides the transformation from G,F to GF and the part of C−1 required to obtain
PEVs for (actual) animals.

GF = Q G,FQ′ and Cu
F = Q Cu

,FQ′ (5)

where Cu
F denotes the submatrix of C−1 for animals 1 to n. Thus the anomaly of alternate allele

codings for PEVs is resolved.
Using a small example comprised of four animals (denoted as A1 to A4) we illustrate how

inclusion of this extra animal results in a single set of PEVs for any allele coding scheme. We fit
a model containing an overall mean as the only fixed effect and genetic effect for each animal in u.
Allele frequencies in the founder population are assumed to be pF = 0.5. Geno- and phenotypes
for A1 to A4, are given in Table 1. We consider three cases (with t = 7 and σ2

e = σ
2
g throughout):

I G is constructed with p = 0.5 for all loci, so that −2P changes the allele coding to −1, 0, 1.
II As I but assuming p = 0 for all loci, i.e. genotypes are processed uncentered.
III As II, but adding an implied founder, A0, to our population and model. Elements in

the pertaining row in Z have values equal to twice the allele frequency in the founder
population. Since we assume pF = 0.5 for all loci, all elements in the row are unity.

Matrices G, C and C−1 and solutions to the MME and their calculated accuracies are summarised
in Tables 2 and 3. Results illustrate the shift in EBVs due to a change in p used to calculate
G while their relative differences remain the same. As emphasized by Strandén & Christensen
(2011), PEVs and the resulting accuracies differ considerably. For the same p (cases II and
III), inclusion of the implied founder animal had no effect on the matrix elements in G and
C−1 pertaining to animals 1 to 4 nor the respective solutions. Adjusting EBVs for the implied
founder’s solution of 0.154 yields transformed values equal to those obtained in case I.

The extra animal in Z (with genotypes 2pF) in case III represents the founder population
and forms the basis of the relationships in G. Its (non-zero) solution results from p , pF and
is the difference in mean between the founder population and the population assumed with p.
Without this animal the mean of the founder population represented in P is assumed to be zero.
When p = pF all is well, but we generally cannot know pF . Cases I and II show that alternate
vectors p do not matter if all we are interested in is û. When we need accuracies, however, this
assumption is crucial. Case III shows that it is not the allele codings, but the different assumed p
that are the problem. Obvious choices are 0.5, the observed values or the imputed frequencies
among pedigree founders. The first implies maximum variance of SNPs, the third aligns G and A.
Case III also shows that the appropriate prediction error variances for any assumed p are retrieved.
Equivalent SNP based models can produce the same EBVs and prediction error covariances.
These can be transformed in the same way by including an extra animal with genotypes 2pF .

Considerable effort has been made to resolve problems associated with combining rela-
tionships based on IBD and IBS. These problems arise because the different matrices relate to
different founder populations with different means, both assumed, explicitly or implicitly, to be
zero. While the founders in A are known and the founders in G are their unknown ancestors it is
unlikely that they share the same mean. The use of meta-founders (Legarra et al., 2015) to modify
relationships among pedigree founders, so that they are all related, is a way of projecting the
founder population beyond the pedigree founders altering both their mean and the additive genetic
variance. If pF was known the implied founder would fulfil a similar function to a meta-founder
(Legarra et al., 2015), and possibly one founder could serve both purposes when animals with
and without genotypes are being analysed together. We can be fairly certain that the observed p is
not pF . While the choice of p used when building G has no effect on the results, this may not be



the case when G is combined with A; however, this is beyond the scope of this paper. Strandén &
Christensen (2011, Eqn. 2) showed the mean as made up of two components – an overall mean
plus the genetic mean of the founder population. They applied the joint mean as the denominator
in the accuracy equation, which has infinite variance. Only one component – that corresponding
to the mean of the founder population should be used – and when it is, the denominator in the
accuracy does not have infinite variance. When developing a SNP based model for single step
evaluation, Fernando et al. (2014) imputed the marker covariates for ungenotyped individuals
and added an equation to represent the mean of a random animal drawn from the unselected
founder population. This parallels the function of the implied founder and enabled modeling the
residual imputation effects with a null mean.

In practice, these are problems in the extensive livestock industries. Unlike intensive
industries such as dairy and poultry where genotyping animals is widespread and systematic, this
process is more haphazard in beef and sheep where there are still large sections of the population
without genotypes. Often problems are exacerbated by the presence of multiple breeds and
crossbreds, all with different founder populations. Use of meta-founders to model relationships
among founders of different breeds can accommodate relationships within and between breeds.
It is likely that separate implied founders will need to be included for each breed.

Conclusions

Analyses using the genomic relationship matrix invoke multiple assumptions which can be
confusing and are sometimes inconsistent with other assumptions. We illustrate that particular
care needs to be taken in modeling means of founder populations, and propose identification of
an implied founder that may help resolve some of these problems.
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Table 1. Geno- and phenotypes for numerical example.

Animal Allele counts Record

A1 1 1 0 1 1 1 0 0 1 2 1 1 0 1 5
A2 0 1 1 2 0 1 1 1 1 1 2 1 1 2 11
A3 2 0 0 1 1 0 0 0 1 2 1 2 1 2 7
A4 1 0 0 1 1 0 0 1 0 1 1 2 2 2 17

Table 2. Genomic relationship matrices G for numerical example.

Case I (p=0.5) Case II (p=0) Case III (p=0 with A01)
A1 A2 A3 A4 A1 A2 A3 A4 A0 A1 A2 A3 A4

A0 2.00 1.57 2.14 1.86 1.71
A1 0.71 0.00 0.57 0.14 1.86 1.71 2.00 1.43 1.57 1.86 1.71 2.00 1.43
A2 0.00 0.71 0.00 0.14 1.71 3.00 2.00 2.00 2.14 1.71 3.00 2.00 2.00
A3 0.57 0.00 1.29 0.86 2.00 2.00 3.00 2.43 1.86 2.00 2.00 3.00 2.43
A4 0.14 0.14 0.86 1.14 1.43 2.00 2.43 2.57 1.71 1.43 2.00 2.43 2.57

1Implied founder

Table 3. Coefficient matrices and solutions for numerical example.

Case I (p=0.5) Case II (p=0) Case III (p=0, with A01)

b̂ A1 A2 A3 A4 b̂ A1 A2 A3 A4 b̂ A0 A1 A2 A3 A4

Coefficient matrix C
4.00 1.00 1.00 1.00 1.00 4.00 1.00 1.00 1.00 1.00 4.00 0.00 1.00 1.00 1.00 1.00

0.00 3.32 -1.48 -1.27 0.45 -0.82
1.00 3.81 -0.25 -2.07 1.23 1.00 4.47 -1.22 -3.01 1.86 1.00 -1.48 5.13 -0.65 -3.21 2.22
1.00 -0.25 2.50 0.43 -0.48 1.00 -1.22 2.13 0.94 -1.09 1.00 -1.27 -0.65 2.62 0.77 -0.78
1.00 -2.07 0.43 4.12 -2.14 1.00 -3.01 0.94 5.04 -2.88 1.00 0.45 -3.21 0.77 5.10 -2.99
1.00 1.23 -0.48 -2.14 3.38 1.00 1.86 -1.09 -2.88 3.92 1.00 -0.82 2.22 -0.78 -2.99 4.13

Inverse of coefficient matrix: C−1

0.64 -0.33 -0.28 -0.52 -0.44 2.20 -1.71 -2.03 -2.17 -1.90 2.20 -1.72 -1.71 -2.03 -2.17 -1.90
-1.72 1.88 1.55 1.91 1.81 1.63

-0.33 0.53 0.15 0.43 0.20 -1.71 1.73 1.72 1.90 1.49 -1.71 1.55 1.73 1.72 1.90 1.49
-0.28 0.15 0.54 0.21 0.24 -2.03 1.72 2.47 2.05 1.89 -2.03 1.91 1.72 2.47 2.05 1.89
-0.52 0.43 0.21 0.85 0.56 -2.17 1.90 2.05 2.59 2.12 -2.17 1.81 1.90 2.05 2.59 2.12
-0.44 0.20 0.24 0.56 0.74 -1.90 1.49 1.89 2.12 2.12 -1.90 1.63 1.49 1.89 2.12 2.12

Solutions2
9.84 -2.41 0.85 -0.55 2.77 9.68 -2.26 1.01 -0.40 2.92 9.68 0.15 -2.26 1.01 -0.40 2.92

-2.41 0.85 -0.55 2.77
Accuracies3

0.51 0.50 0.58 0.59 0.26 0.42 0.37 0.42 0.24 0.26 0.42 0.37 0.42
0.51 0.50 0.58 0.59

1Implied founder
2First line: solutions, second line: animal solutions for case III adjusted for A0
3First line: from MME, second line: adjusted


