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Summary

The accuracy of genomic predictions could be potentially improved by creating competitively
priced low to medium density custom SNP chips, that include sequence SNPs strongly
associated with a range of economically important traits. The SheepGenomesDB and
Australia Sheep CRC have recently completed whole-genome sequencing of 726 sheep,
enabling the imputation of approximately 46,000 Australian sheep of multiple breeds and
crosses that were previously genotyped with lower density SNP chips. Subsets of these sheep
are recorded for a range of growth and meat quality traits. We used this dataset to discover
putative causal SNPs associated with these traits and then combined these SNPs with the 50k
SNP chip genotypes for Bayesian genomic prediction. The genomic predictions were
validated in purebred Merino and Border Leicester x Merino crossbreds. On average there
was a 5% increase in the accuracy of genomic breeding values by adding the top sequence
SNPs to the 50k SNP genotypes compared to using only the 50k genotypes.
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Introduction

In genomic prediction, dense marker information and phenotypes in the reference
population are used to estimate the markers effects. These estimated marker effects, can then
be used to calculate the genomic estimated breeding values (GEBVs) for the target or
validation animals which are genotyped, but do not have any phenotypic records (Meuwissen
etal.,2001).

Genomic prediction provides an attractive alternative to traditional selection for hard to
measure traits or traits that cannot be measured in the selection candidates, such as milk
production in dairy bulls and meat quality in sheep. However, in comparison with dairy cattle,
the adoption of genomic selection in sheep genetic evaluations needs extra considerations due
to the diversity of breeds and composites resulting in small reference population sizes within
breed and high genotyping costs relative to economic returns (van der Werf et al., 2014).
Therefore, it is important to keep genotyping costs as low as possible and to increase the
reference population size through the use of multi-breed populations for genomic evaluations.
So far, information from other breeds has shown to be of limited value in genomic prediction.
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This could be because the genotyped markers may not always tag the same QTL across
breeds (Goddard et al., these proceedings). Although it is possible to impute genotyped
animals to whole-genome sequence (WGS), for routine genetic evaluations the use of
millions of genotypes is not computationally feasible and the accuracy of imputation is less
than real genotyping (Bolormaa ef al., these proceedings). Ideally then, the industry requires a
relatively inexpensive customized low to medium density SNP chip, that includes putative
causal mutations from sequence affecting traits of interest.

In this study we used a multi-breed reference population in sheep to assess the potential
of exploiting imputed WGS to increase the accuracy of genomic predictions. Specifically, we
investigated 6 growth and meat quality traits. We applied Bayesian methods to compare
genomic prediction using only a 50k SNP marker panel versus a 50k panel with added
potential QTL variants discovered in imputed sequence.

Material and methods
Animals and phenotypes

The animals were a mixture of breeds and crosses that had been phenotyped and
genotyped as part of the Sheep CRC dataset and industry evaluations. They were divided to
three non-overlapping groups. The aim was to generate a QTL discovery population, a
reference population for genomic prediction and a validation population, that were
independent of each other to avoid bias. The animals for the validation group were selected to
have the lowest possible genetic relationships with the reference sets, to ensure that the
genomic prediction is least affected by these genetic relationships. The number of animals in
the trait specific reference and validation sets are shown in Table 1. The validation consisted
of two breed groups with large numbers of genotyped animals in our study: 1) purebred
Merino (MER) and 2) Border Leicester x Merino crossbreds (BL x MER). There was a more
diverse mixture of breeds and crosses in both the reference and QTL discovery populations.
The QTL discovery population was used only to identify potential causal mutations using a
genome-wide association study (GWAS) with imputed WGS. The genomic prediction
equations were derived only from the reference population, and these were validated
separately in each of the two validation groups.

We studied 6 traits, consisting of carcass fat depth at C site (CCFAT), carcass and post-
weaning eye muscle depth (CEMD and PEMD), intermuscular fat percentage (IMF), shear
force measured at day 5 after slaughter (SF5) and post-weaning weight (PWT). The
descriptions of the phenotypes are available in Bolormaa et al. (2016). Phenotypes pre-
adjusted for various fixed effects including birth-rearing type, sex, and contemporary groups.

Genotypes and QTL discovery

All animals had real or imputed HD genotypes and were imputed to WGS (details given
in Bolormaa et al., these proceedings). When using the 50k panel for genomic prediction, we
used 36,955 SNPs with known location and minor allele frequency (MAF) > 0.005. The
imputed WGS included 31,154,082 variants. Genotypes on the X chromosome were
excluded.

We used only the discovery population for each trait to run a GWAS using the 31
million imputed genotypes. We set a lenient GWAS p-value threshold of <10-3 and from the
start of the chromosome selected the most significant SNPs below this threshold within a 100
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Kb window, and sliding 50 Kb, repeating this along each chromosome. After selection of
these top sequence variants, PLINK software (Purcell et al., 2007) was used to prune one of
any pair of SNPs with an r? linkage disequilibrium score > 0.95. The GWAS model tested
each of the sequence variants, one at a time, for each trait using the Wombat software (Meyer,
2007):

y=Xb + 50, + Qq+ Zg + e (1)

in which y and b are vectors of phenotypes and fixed effects, respectively, s; is the
vector of genotypes (coded 0,1,2) for each animal at the i SNP fitted as a covariate, ; is the
i SNP effect, q ~ N(0, I6?,) contains random breed effects and Q is a matrix with breed
proportion of each animal according to pedigree information and o2, is the variance among
breed groups, g ~ N(0, Go%snp) contains random additive effects where G is the genomic
relationship matrix (GRM) and o?snp is the variance explained by all SNPs. The GRM was
constructed with HD SNPs, e is the vector of random residual effects, X, Q and Z are the
design matrices connecting phenotypes to their corresponding fixed effect, random breed
effect and random additive effect, respectively. Variance components for random effects were
first computed without s;0; in the model and were then fixed for these values in the GWAS
analysis.

Genomic prediction

We applied the BayesR method (Erbe et al., 2012) and the BayesRC method (MacLeod
et al., 2016) for genomic prediction. Prior to running the Bayesian analysis, the reference and
validation phenotypes were pre-adjusted for data source, and breed proportions using a model
similar to equation 1, but excluding the single SNP effect (siai). This pre-adjustment of the
phenotypes mitigates possible effects due to population structure (such as Merino strain) that
could lead to biased results in the validation sets. Prior to analysis genotypes were centred and
standardised to a variance of 1. The Bayesian models fitted only the SNP effects, modelled as
a mixture of four normal distributions with a mean of zero and variance: 6%,=002%,
62,=0.000162%,, 6%=0.0010%, and 0%4=0.01c%,, where 62, is the additive genetic variance. The
Bayesian GEBVs were calculated using one of three possible genotype sets: top sequence
variants (top), 50k panel (50k), or 50k plus top sequence variants (50k+top).

The key difference between BayesR and BayesRC is that the later allowed for the
selected top sequence SNPs to be allocated to a separate category or class than the remaining
50k SNPs. Each category is then independently modelled as a mixture of the four
distributions but with the same priors. If the separate category of SNP is enriched for causal
variants this can improve the fit of the model. Each Bayesian model was replicated with 5
MCMC chains, each with 40,000 iterations (20,000 burn-in). The accuracy of genomic
prediction was calculated as Pearson’s correlation between adjusted phenotypes and GEBVs
divided by the square root of trait heritability (50k result, Table 2). The bias of predictions
was defined as the regression coefficient of adjusted phenotypes on GEBVs.

Results and discussion

The number of top sequence variants and animals in the reference and validation sets
are shown in Table 1. The genetic variances explained by SNPs and the estimated
heritabilities in different models are shown in Table 2. The amount of 62, explained by the top
SNPs was much lower than using the 50k SNPs in the model which indicates that only a
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proportion of QTLs were captured in the top sequence variants. Typically GWAS QTL
account for only a proportion of the expected genetic variance because they lack power to
detect many of the small or rare QTL affecting quantitative traits. Adding the top SNPs to the
50k, increased the amount of 62, explained by the SNPs in BayesR but not in BayesRC.

The accuracy and bias of genomic predictions for the two different validation sets are
shown in Figure 1 and 2. To more generally compare the results of different models, the
accuracy and bias for each of the two validation groups was averaged for each trait and
shown in Table 3. On average, the accuracy of genomic prediction increased by about 5% by
adding the top sequence variants to 50k genotypes. The accuracy of predictions increased in
BayesRC in comparison with BayesR when the top SNPs were highly predictive (such as
PWT). However, this improvement was marginal probably because the added sequence SNPs
were those with relatively large effects, and BayesR may already have captured them
appropriately by allocation to the distribution with the highest variance. Although using only
top SNPs to calculate GEBVs gave an average accuracy similar to the 50k, the bias of
predictions for each of the breeds in the validation set was much more variable with top SNPs
alone than for denser genotypes (Figure 1 and 2). For example, the regression of genomic
predictions on phenotypes for CCFAT in pure Merino and Border Leicester X Merino
crossbreds were 0.68 and 1.65 when using only top SNPs, and this reduced to 1.10 and 0.92
using 50k and top SNPs in the BayesR model. This suggests that these top sequence variants
are not always segregating in all validation breeds or their effects are not equal across
different breeds.

In conclusion, adding sequence SNPs associated with economic traits and adding them
to low density SNP panels can increase the accuracy of genomic prediction while minimising
genotyping costs for industry applications.
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Table 1. Number of top-SNPs and animals in discovery, reference and validation sets in
different traits.

Number of animals in validation
set

Number of animals

Trait (unit) top-SNPs  Discovery  Reference MER BL x MER
CCFAT (mm) 4,426 4,452 7,635 912 536
CEMD (mm) 4,377 4,473 7,714 904 519
PEMD (mm) 4,283 7,114 9,715 1,766 586
IMF (%) 4,354 3,905 6,353 843 474
SF5 (N) 4,901 4,344 7,392 868 531
PWT (Kg) 4,652 8,937 11,067 3,118 543
Table 2. The estimated genetic variance (and heritability) in different models.

BayesR BayesRC
Trait (unit) top 50k 50k+top 50k+top
CCFAT (mm) 0.24 (0.09) 0.49 (0.19) 0.51 (0.20) 0.49 (0.19)
CEMD (mm) 0.55 (0.07) 1.19 (0.14) 1.28 (0.15) 1.27 (0.15)
PEMD (mm) 0.63 (0.13) 1.13 (0.24) 1.22 (0.26) 1.15(0.24)
IMF (%) 0.11 (0.16) 0.26 (0.37) 0.26 (0.37) 0.25 (0.36)
SF5 (N) 6.20 (0.14) 10.71(0.23) 11.30(0.25) 10.27(0.23)
PWT (Kg) 3.82(0.12) 7.19 (0.21) 7.41 (0.22) 7.18 (0.22)

Table 3. The accuracy (and bias) of genomic prediction averaged across two validation

groups (pure Merino and Border Leicester X Merino) in different models.

BayesR BayesRC
Trait (unit) top 50k 50k+top 50k+top
CCFAT (mm) 0.48 (1.16) 0.36 (0.93) 0.44 (1.01) 0.48 (1.06)
CEMD (mm) 0.21 (0.76) 0.26 (0.94) 0.29 (1.00) 0.30 (0.97)
PEMD (mm) 0.35(0.63) 0.32 (0.82) 0.38 (0.75) 0.38 (0.68)
IMF (%) 0.26 (0.77) 0.20 (0.54) 0.23 (0.64) 0.26 (0.70)
SF5 (N) 0.05 (0.15) 0.14 (0.42) 0.15 (0.45) 0.11 (0.31)
PWT (Kg) 0.43 (0.70) 0.36 (0.66) 0.43 (0.70) 0.45 (0.72)
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Figure 1. Accuracy (A) and bias (B) of genomic predictions in purebred Merino for different
traits in different models.
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* CCFAT = carcass fat depth at C site, CEMD = carcass eye muscle depth, PEMD = post-weaning
eye muscle depth, IMF = intermuscular fat percentage, SF5 = shear force measured at day 5 after
slaughter and PWT = post-weaning weight.
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Figure 2. Accuracy (A) and bias (B) of genomic predictions in Border Leicester x Merino
crossbreds for different traits in different models.
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* CCFAT = carcass fat depth at C site, CEMD = carcass eye muscle depth, PEMD = post-weaning
eye muscle depth, IMF = intermuscular fat percentage, SF5 = shear force measured at day 5 after
slaughter and PWT = post-weaning weight.



