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Summary

Single-step GBLUP (ssGBLUP) procedures have now been implemented into Australia’s
BREEDPLAN genetic evaluation system for beef cattle. This major remodelling required the
development of many new features and modifications to existing procedures. The first
requirement was the construction of a flexible but robust set of procedures for handling and
processing of raw SNP genotypes to enable the construction of suitable genomic relationship
matrices. The analytical processes were modified to replace with and for the explicit fitting
of genetic groups. A new accuracy algorithm was developed and the solver was revised.
Examples from Australian Angus and Brahman breeds comparing current BLUP evaluation
with ssGBLUP are presented to show the resultant changes and effects of implementing the
new genomic evaluations.
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Introduction

Genomic selection is rapidly changing dairy breeding (Garcia-Ruiz et al. 2016) with rates of
genetic progress increasing 2-4 fold for most dairy traits. This phenomenal change was made
possible with the advent of low-cost, high density SNP microarrays and the application of
genomic selection (Meuwissen et al. 2001). However, for beef cattle the impact of genomic
selection has been less pronounced to date. The BREEDPLAN analytical software (Graser et
al. 2005) developed by the Animal Genetics and Breeding Unit (AGBU) has evolved over the
past decade to include a range of DNA marker-based predictions. Single-step procedures
(Legarra et al. 2014) have recently been implemented into several livestock evaluations,
including US Angus (Lourenco et al. 2015), and this paper presents the implementation of
single-step procedures in the routine BREEDPLAN genetic evaluation, and closely parallels
developments in Australian sheep genetic evaluations.

Progression of including DNA based predictions in BREEDPLAN

DNA based predictions have been included in BREEDPLAN since 2008 with the inclusion of
GeneSTAR meat tenderness gene marker predictions, with effects estimated from Beef CRC
data (Johnston and Graser 2010). Genomic values were included as additional predicted
phenotypes in the multi-trait BLUP evaluations using a 0.28 estimated genetic correlation
(Johnston et al. 2009). Development of the bovine 50K microarray in 2008 saw the first
genome-wide SNP based predictions from Pfizer Animal Genetics for Angus cattle in 2011.

mailto:djohnsto@une.edu.au


Proceedings of the World Congress on Genetics Applied to Livestock Production, 11.269

These predictions, called MVPs, were included in Angus BREEDPLAN in 2011 using a post-
BLUP blending method. Genomic accuracies were estimated in an independent dataset and
ranged from 0.21 to 0.44 for a limited number (N=9) of traits (Johnston et al. 2010). This was
shortly followed by an increased number of genomic predictions and an expanded number of
products and traits e.g. Igenity and Beef CRC direct genomic values (DGV) (Boerner and
Johnston 2013, Boerner et al. 2014a,b). These new genomic predictions were incorporated
into BREEDPLAN using a modified blending algorithm that enabled multi-source genomic
information. In 2014, genomic accuracies for blending in Angus were re-estimated for 12
traits and the genomic accuracies ranged from 0.27 to 0.62 (Boerner et al. 2014c). In the
same year, Brahman BREEDPLAN was modified to include the blending of Beef CRC DGVs
for weaning weight and the female fertility EBV, days to calving with accuracies of 0.27 and
0.35, respectively.

New procedures for implementing ssGBLUP

Adoption of wide-scale SNP genotyping in beef cattle breeding is currently low and
represents a very small proportion of the total animals in current evaluations. Therefore
evaluations need to utilise existing pedigree information as well as efficiently use genomic
information from the small numbers of genotyped individuals. Current blending approaches
have limitations with regard to calibration and implementation but the development of single-
step procedures (Legarra et al. 2009, Christensen and Lund 2010) allowed the simultaneous
use of genotypes, all phenotypes and pedigree information into existing genetic evaluations.
The following developments and modifications were required to include ssGBLUP into the
routine BREEDPLAN multi-trait linear model evaluations.

Construction of a genomic pipeline

Processing raw SNP genotypes into a genomic relationship matrix (G) for a given breed
required the development of several data processing and quality assurance steps. The resulting
genomics pipeline developed for beef cattle was recently documented by Connors et al.
(2017). In brief, the procedure developed takes industry-recorded genotypes, from multiple
labs and genotyping platforms, and processes them through a series of databases, enabling
matching, merging and quality assurance checks to be performed.

Building the G matrix

After initial quality control of genotypes described above, only purebred individuals (Boerner
2017) were selected for parentage testing. The opposing homozygote (OH) approach for
parentage (Hayes et al. 2011) was used to exclude individuals with extra numbers of OH with
any of their parents. The approach was slightly modified to use the number of OH divided by
number of loci that are homozygous in both parent and offspring. In addition, individuals
were excluded that resulted in too many heterozygotes in their sire as the result of too many
OH with other individuals in a half-sib family (Ferdosi et al. 2014). A possible sire was
assigned to some individuals with unknown sire, or individuals with incorrect pedigree
identified in previous steps. Then the original pedigree for individuals with genotypes was
rebuilt using the parentage information to yield a corrected pedigree (CPed). The CPed was
used to impute sire haplotypes and phase offspring in half-sib families (Ferdosi et al. 2014,
2016). The new sire haplotypes were converted to genotypes and were added to original
genotypes. Sire and half-sib haplotypes were then added to the haplotype library. The
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haplotype library and the CPed were used to impute missing genotypes in all individuals that
were purebreds and passed the parentage test (Sargolzaei et al. 2014). The genomic
relationship matrix (G) was built by following VanRaden’s (2008) first method using the
imputed genotypes.

Modified mixed model equations

Implementation of ssGBLUP required replacing the traditional inverse of the numerator
relationship matrix ( with However, in an analysis with millions of individuals, H can
become very large and its inversion could become impossible. Thus Aguilar et al. (2010)
suggested a new method to build directly using the following formula:

where, A22 is the inverse of the numerator relationship matrix for individuals with genotypes
and was built using the method explained in Colleau (2002).

When building a modified G matrix was used, using a weighting factor λ to regress
genomic relationships towards pedigree relationships. The derivation of appropriate values of
λ were determined using an empirical approach described by Zhang et al. (2017) for a range
of beef traits. In general, the results found that a λ value of 0.5 to weight genomic and
pedigree information in was most appropriate, and this has been implemented in the current
ssGBLUP BREEDPLAN evaluations.

All current BREEDPLAN evaluations include genetic groups as additional random
effects to account for genetic differences in sub-populations of founder animals, and are
included using an implicit model in which groups are included as dummy ancestors in .
However, this does not work when using in ssGBLUP. Therefore, for implementation of
ssGBLUP into BREEDPLAN the genetic groups were removed from the animal breeding
value block of the mixed model equations and fitted explicitly as separate effects (Misztal et
al. 2013). All other fixed and random effects remain unchanged, and includes all other
features of the BREEDPLAN evaluations (Graser et al. 2005) e.g. sire x herd interactions,
heterogeneous residual variance adjustment, importation of overseas EPD, and inclusion of
crossbred animals.

New accuracy and solver algorithms

The accuracy of an EBV is important accompanying information from genetic evaluation
systems. Traditionally these have relied on approximations based on effective progeny
number (EPN) because of computational limitations in inverting the mixed model equations
in large evaluations is not feasible (Graser and Tier 1997). Similarly for implementation of
ssGBLUP, a new approximation algorithm was required to include the contribution from
genomics to the EPN approach. The new procedure to compute genomic EPN and then add
them to the existing EPN from phenotypic data is described by Li et al. (2017) and compared
the approximation with actual accuracies derived for both sheep and beef traits.

The solver currently used for the new ssGBLUP is a modified version of the original
BREEDPLAN solver. The new system includes the explicit fitting of genetic groups and as a
fully stored dense matrix. Acceleration of the processing time was achieved by using multi-
threading MKL and OMP. In the next few months, the BREEDPLAN evaluations will move
to AGBU’s next generation solver that has the capacity to solve more than 450 million
equations in less than 24 hours and will help meet the challenge of increased size of genomic



Proceedings of the World Congress on Genetics Applied to Livestock Production, 11.269

evaluations and demands for more frequent runs.

Implementation of ssGBLUP in Australian Angus and Brahman

Data

September 2017 data extracts of Australian Angus and Brahman breeds were used to compare
standard multi-trait linear model BREEDPLAN BLUP evaluations (without blending) with
new ssGBLUP evaluations. The evaluations included 23 traits, with 2 maternal effects, and
permanent environmental effects. The ssGBLUP evaluations included G matrices containing
29,441 and 10,905 animals for Angus and Brahman, respectively. Total number of animals
not genotyped were 2,215,744 and 420,532 for Angus and Brahman, respectively. For
Brahmans, the evaluations included two new female reproduction traits to enable ssGBLUP to
emulate the existing evaluation that was blending genomic values derived from heifer age at
puberty and lactation anoestrous interval phenotypes.

Results

Comparison of EBVs and accuracies from standard BLUP versus ssGBLUP evaluations are
presented in Tables 1 and 2 for genotyped and non-genotyped individuals in the two breeds
for a sub-set of traits. The EBV means in both breeds for ssGBLUP evaluations were similar
to conventional BLUP runs but had increased variance, and this was more so for genotyped
animals compared to non-genotyped. The extent of the increase in variance of EBVs varied
between traits. Similarly, mean EBV accuracies from ssGBLUP increased compared to BLUP
runs, but had lower variance, and was more evident in the genotyped animals.

Table 1. Angus mean EBVs (Ebv_) and accuracies (Acc_) for a sub-set of traits for standard
evaluation (BLUP) and new ssGBLUP for genotyped (IN G) and non-genotyped (NOT G)
animals.

BLUP ssGBLUP
Run Trait1 Mean Std Min Max Mean Std Min Max
IN G Acc_BW 71.8 11.0 0 99 73.6 6.6 14 99

Acc_YW 66.7 10.9 0 99 69.2 6.9 11 99
Acc_DC 40.4 10.6 0 98 42.3 9.6 4 98
Acc_CIMF 53.9 11.8 0 98 58.5 8.7 13 98
Ebv_BW 4.1 1.6 -2.9 12.0 4.2 2.0 -4.5 12.3
Ebv_YW 73.9 14.2 -3.7 126.5 74.1 16.4 -14.6 129.2
Ebv_DC -3.9 2.3 -14.0 8.9 -3.8 2.4 -13.9 8.0
Ebv_CIMF 1.7 1.0 -1.9 6.1 1.7 1.1 -2.1 6.2

NOT G Acc_BW 62.9 17.1 0 99 63.1 16.9 0 99
Acc_YW 60.4 15.3 0 99 60.6 15.2 0 99
Acc_DC 37.3 14.2 0 98 37.5 14.2 0 98
Acc_CIMF 40.0 17.4 0 99 40.9 17.5 0 99
Ebv_BW 3.7 1.7 -5.0 12.8 3.7 1.7 -5.1 12.8
Ebv_YW 54.1 19.9 -26.7 155.0 54.1 20.2 -27.2 154.9
Ebv_DC -1.8 2.5 -17.2 12.3 -1.8 2.5 -17.6 12.5
Ebv_CIMF 0.7 0.9 -3.0 6.4 0.8 0.8 -2.9 6.4

1BW=birth weight direct (kg); YW = yearling weight (kg); DC = days to calving (days); CIMF = carcase intramuscular fat
(%)
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The BLUP and ssGBLUP evaluations in both breeds included the same configuration of
genetic groups and the correlations between the solutions for Angus were greater than 0.99.
Similar correlations were observed for the majority of traits for Brahmans except for some
traits with very low numbers of records. The genetic trends (not presented) between BLUP
and ssGBLUP were essentially identical both for genotyped and non-genotyped animals.
However, in both breeds the mean EBVs were generally higher for genotyped animals,
reflecting on average the sampling of genetically superior animals for genotyping.

Table 2. Brahman mean EBVs (ebv) and accuracies (Acc) for a sub-set of traits for standard
evaluation (BLUP) and new ssGBLUP for genotyped (IN G) and non-genotyped (NOTG)
animals.

BLUP ssGBLUP
Run Trait1 Mean Std Min Max Mean Std Min Max
IN G Acc_BW 59.6 15.8 0 96 62.0 11.5 25 96

Acc_YW 66.3 16.5 0 98 69.0 11.1 11 98
Acc_DC 40.6 17.8 0 96 47.2 13.7 6 96
Acc_CRIB 39.8 14.2 0 92 44.8 11.0 18 92
Ebv_BW 1.9 1.7 -4.5 7.2 1.8 1.9 -5.7 7.6
Ebv_YW 21.6 9.8 -23.6 72.2 21.1 10.6 -23.5 68.4
Ebv_DC -1.2 5.0 -34.9 21.4 -1.5 6.1 -35.6 22.1
Ebv_CRIB -0.2 0.7 -3.2 3.9 -0.2 0.8 -3.2 4.3

NOT G Acc_BW 46.6 17.5 0 96 47.1 17.3 0 96
Acc_YW 53.3 19.8 0 97 53.8 19.5 0 97
Acc_DC 26.2 14.7 0 93 27.8 15.1 0 93
Acc_CRIB 27.3 12.4 0 86 28.5 12.8 0 86
Ebv_BW 1.7 1.6 -5.3 7.9 1.7 1.6 -5.4 8.0
Ebv_YW 17.6 10.2 -40.4 86.3 17.7 10.2 -40.7 86.6
Ebv_DC 0.4 3.3 -30.7 19.2 0.5 3.7 -32.1 18.6
Ebv_CRIB 0.0 0.7 -3.1 4.8 0.0 0.7 -3.0 4.7

1BW = birth weight direct (kg); YW = yearling weight (kg); DC = days to calving (days); CRIB =carcase rib fat depth
(mm)

Discussion

In both breeds the implementation of ssGBLUP resulted in the largest changes in EBVs and
accuracies in those animals with genotypes, with smaller changes observed in non-genotyped
animals. ssGBLUP increased the spread of EBVs and increased EBV accuracies but the
magnitude of the changes differed across traits. This likely reflects differences trait genetic
architecture and heritability, and also the number of animals in the breeds with genotypes and
the trait recorded. Changing configuration of genetic groups did not affect the evaluations and
implementation of the revised solver resulted in similar run times, and therefore the
ssGBLUP is commercially viable to implement. The genomic pipeline allows for timely
processing of genotypic data; however, issues of matching animal identifications across
systems is not trivial and handling discrepancies of parentage identified using genomics also
requires considerable effort to resolve.

Future research and development
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Including additional breeds

Single-step BREEDPLAN is available for implementation in all breeds however the timing
will primarily depend on a breed having sufficient animals genotyped to build a stable G
matrix. Currently, several Australian breeds are increasing the number of animals genotyped
and it is expected that these breeds will transfer to ssGBLUP evaluations in the next 12
months. However another constraint to the implementation of effective genomic selection is
the number of phenotyped and genotyped animals in a breed, commonly referred to as the
size of the reference population. This is particularly important for traits that are difficult or
costly to record or are lowly heritable, and therefore are the traits that will benefit most from
genomic selection. This limitation is being addressed through several industry and research
initiatives in Australia. For example, in northern Australia a large project is underway in
tropically adapted beef breeds (Johnston et al. 2017) recording female reproduction
phenotypes to drive future ssGBLUP in those breeds. Also in several temperate breeds, there
are collaborative projects (called BINs) collecting feed intake, abattoir carcase and meat
quality traits to increase the size of genomic reference populations for those traits. However,
with the implementation of ssGBLUP the breeding sector of the beef industry will need to
consider how to fund ongoing collection of phenotypic data and genotyping.

Future developments

Over time it is expected that the ssGBLUP implemented will need to be modified, especially
as the numbers of genotyped animals’ increase. Currently building of is not a constraint but it
is anticipated as the number of genotyped animals increases we will need to modify the
evaluation. This may require implementing hybrid-type models (e.g. Fernando et al. 2014) or
use techniques such as recursive algorithm for inversion of G when the number of genotyped
animals exceeds around 150,000 (Misztal et al. 2014) or methods for updating the inverse of
G (Meyer et al. 2015). It is also anticipated these ssGBLUP evaluations will need to be
expanded to include more than one breed and crossbred animals in the construction of G.
This is likely to require the inclusion of procedures such as meta-founder models as proposed
by Legarra et al. (2015) or possible use of sequence data to enable accurate across-breed
genomic predictions (van den Berg et al. 2017). Work is also underway to develop single-step
procedures for existing threshold model analyses for calving ease and docility.

Conclusions

Implementation of ssGBLUP heralds a new era for genetic evaluation in Australia. With the
more effective use of genomic information, the resulting increases in accuracy, and potential
to evaluate more animals in our breeding populations, presents opportunity to increase rates
of genetic gain, particularly for traits currently with low accuracy. However the challenge
exists to increase levels of genotyping: certainly the implementation of ssGBLUP should
increase the value proposition but the relative high cost of genotyping is still likely to be a
constraint.
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