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Summary

This study investigates improvement in accuracy of genomic prediction for growth and eating quality
traits in Australian sheep populations based on selected variants from imputed whole genome
sequence (WGS) data combined with a 50k-SNP array. Selection of SNP variants was based on single
trait multi-breed genome wide association studies (GWAS) on WGS data in an independent data subset.
Genomic prediction was based on genomic best linear unbiased prediction (GBLUP) using training sets
of between 6,353 and 11,067 multi-breed purebred and crossbred animals. Four different genotype sets
were compared: 50k SNP genotypes, WGS variants, selected sequence variants from GWAS and
selected sequence variants combined with 50k genotypes. The latter set was modeled as either one or
as two subsets with different variance components. Results showed a substantial improvement in
prediction accuracy when selected sequence variants from GWAS were added to the standard 50k-SNP
array. Absolute value of increase in accuracy across different traits was on average 6.2% and 4.1% for
purebred and crossbred Merino sheep, respectively, when selected sequence variants and 50k
genotypes were fitted as two variance components simultaneously. The improvement in prediction
accuracy across different traits was on average 4.4% and 3.8% for purebred and crossbred Merino
sheep, respectively, when selected sequence variants combined with 50k SNP arrays were fitted as one
variance component.
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Introduction

Accuracy of genomic prediction is highly dependent on the size of the training population and the
effective number of chromosome segments as a function of the effective population size (Ne). In multi-
breed/crossbred populations such as in Australian sheep population, it is difficult to achieve a
sufficiently high genomic prediction accuracy for genetically diverse breeds with high Ne or for minor
breeds and it would be beneficial if across breed information could be used. So far, there is limited
evidence that information from other breeds can notably increases the prediction accuracy, when
prediction is based on common genome wide single nucleotide polymorphism (SNP) arrays like 50k
genotypes. This could be due to low linkage disequilibrium (LD) between genetic markers and QTL and
also because of possible differences in QTL effects across different breeds and strains within a breed.
Low LD suggests denser marker genotypes could improve genomic prediction accuracy across breeds.
However, using high density (600k) genotypes has shown only a small improvement in prediction
accuracy in sheep compared to using a 50k SNP array (Moghaddar et al., 2017). Whole genome
sequence data contains millions of variants, including causative mutations responsible for genetic
variation of a trait. However, causal mutations and variants in strong linkage with them, are likely to be
only a small subset of the whole sequence variants. Studies in dairy cattle show no to limited
improvements in prediction accuracy when using the complete set of sequence variants or when a
subset of significant GWAS sequence variants were combined with a common medium density SNP
array (e.g. van Binsbergen et al., 2015; van den Berg et al., 2016; Brøndum et al., 2015; VanRaden et al.,
2017). This study investigates the accuracy of genomic prediction for growth and eating quality traits in
a multi-breed Australian sheep population using selected sequence variants combined with 50k
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genotypes compared to using whole genome sequence data or only 50k genotypes.

Materials and Methods

Phenotypes. Phenotypes of six growth and eating quality traits collected between 2008 and 2015 from
a combined multi-breed “Research” (Sheep-Cooperative Research Center Information Nucleus Flocks)
and “Industry” database (Sheep Genetics, AGBU) were used in this study. The investigated traits were
post weaning weight (PWT), post weaning eye muscle depth (PEMD), carcass eye muscle depth
(CEMD), carcass fat (CFAT), intra muscular fat (IMF) and shear force at day 5 aging (SF5). The
phenotypes were first adjusted for significant non-genetic effects, including contemporary group and
data source and for maternal effects and genetic groups derived from pedigree. All adjusted
phenotypes were then divided into three non-overlapping data subsets including a GWAS discovery
subset, a genomic prediction training subset and two validation subsets. The GWAS discovery subset
was selected randomly and included all the main breeds and crosses in the research and industry data
(across all birth years) and ranged from 4,282 to 4,900 animals for different traits. The prediction
training subset was similar in composition to the GWAS discovery and ranged from 6,353 to 11,067
animals across different traits. The validation subset was comprised of two groups; a purebred Merino
subset ranging from 848 to 3,118 animals and a crossbred of Border Leicester x Merino sheep (BLxMer)
subset ranging from 315 to 868 animals for different traits. Validation subsets were selected to have
low genomic relationship to the training subset by assigning complete half-sib families to subsets.

SNP Marker Genotypes
50k genotypes: A total of 35,980 animals from research and industry flocks were used across different
traits in this study in which animals had already been genotyped with 50k-ovine SNP genotypes (67%)
or imputed from low density 12k-ovine SNP genotypes to 50k genotypes (33%). Imputation from 12k to
50k genotypes was based on Beagle 3.3.2 software (Browning, 2009). After performing quality control
on genotypes the number of SNPs used in the final 50k array was equal to 48,599.

High Density (HD) genotypes: 2,266 key animals including all sires and dams/progeny with a high
relationship to the rest of the population of purebreds and crossbreds of the four main sheep breeds
(Merino, Border Leicester, Poll Dorset and White Suffolk) were genotyped with the ovine HD SNP chip
(600k). After performing quality control the sporadic missing genotypes in HD genotypes were imputed
with Beagle 3.3.2. The total number of SNPs in the final HD genotype array was 510,065. All 2,266
animals with observed HD genotypes were used as a reference set to impute 50k genotypes to HD
using Minimac 3.0 (Das et al., 2016). Prior to imputation pre-phasing was performed using Eagle 2.0
software (Loh et al., 2016) separately for HD genotyped animals and for 50k genotyped animals.

Whole Genome Sequence (WGS) genotypes:
A complete description of the imputation to whole genome sequence in these Sheep-CRC animals is
provided by Bolormaa et al., (these proceedings). Briefly 376 animals from the main Australian sheep
breeds from research flocks were sequenced (with ~10x coverage) by the Sheep-CRC. This data was
then combined with WGS data on an additional 350 European sheep breeds sequenced within the
“Sheep Genomes DB” project (Daetwyler et al., 2017). The combined WGS data on 726 animals were
used as the sequence imputation reference set to impute 35,518 animals with real or imputed HD
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genotypes to sequence. As described for HD imputation, genotypes were pre-phased using Eagle2 (Loh
et al., 2016) and then imputed with Minimac3 (Das et al., 2016). All variants with Minimac 3.0
imputation quality statistic (R2) lower than 0.4 were discarded, resulting in a final set of 31,154,249 SNP
and InDel genotypes for every animal.

Statistical methods.
Pre-adjusted phenotypes described above were used in GWAS analysis and in genomic prediction. The
GWAS was implemented based on single variant regression method in the independent multi-breed
GWAS discovery data subset. A genomic relationship matrix G (calculated based on HD genotypes) was
also fitted in GWAS to account for the population structure not captured for by genetic groups.
Sequence variants to be used in genomic prediction were selected based on the most significant SNP (-
Log Pvalue ≥ 3) and then pruned for high LD (≥ 0.95) in each 100 kb window with a sliding window size
of 50kb. GBLUP was performed for the training and validation subset with pre-adjusted phenotypes and
fitting G constructed from: a) 50k genotypes, b) all sequence variants, c) selected sequence variants, d)
selected sequence variants combined with 50k genotype and fitted as one variance component and e)
50k genotypes and selected sequence variants fitted as two variance components simultaneously.
MTG2 software (Lee and van der Werf, 2016) was used for genomic prediction. Accuracy of genomic
prediction was evaluated in validation data subsets (purebred Merinos and crossbred Merinos) based
on the correlation between genomic breeding values (GBV) and the adjusted phenotypes divided by the
square root of trait heritability (calculated from the 50K genotype GBLUP: Table 1). Bias of genomic
prediction was assessed as deviation from unity of the coefficient of regression of adjusted-phenotypes
on GBV in validation subsets.

Results and Discussion

Variance components.
Table 1 shows the summary statistics of the data including size of the genomic prediction training
subset, phenotypic mean and standard deviation plus estimated additive genetic variance and
heritability for different models. Results showed a small but consistently higher additive genetic
variance and hence heritability based on WGS data or 50k genotypes plus selected sequence variants
for different traits compared to only 50k genotypes. The heritability based on WGS variants was always
the highest and the sum of heritability based on fitting 50k genotypes and selected sequence variants
(fitted as two component) was in-between the heritability from 50k genotypes and WGS data.
Heritability of selected sequence variants (-LogPvalue ≥ 3) varied between 3% and 11% for different
traits when selected sequence variants fitted with the 50k genotypes simultaneously.

Accuracy and bias of genomic prediction. Figures 1 and 2 show the accuracy of genomic prediction
based on different models for purebred and crossbred Merino validation subsets respectively.
Compared to using 50k genotypes, using all sequence variants resulted in a 1.4% and 2.6% (absolute
value) improvement in prediction accuracy for purebred and crossbred Merinos for different traits. A
notably higher and almost consistent improvement in prediction accuracy was observed when selected
sequence variants from GWAS were combined with 50k genotypes. Improvement in absolute value of
prediction accuracy was 6.2% and 4.1% for the purebred and crossbred validation populations when
selected sequence variants were fitted as two separate variance components, and 4.4% and 3.8% when
selected sequence variants and 50k genotypes were fitted as one variance component. An exception to
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this was SF5 in both purebred and crossbred validation subset in which 50k-SNP genotypes or all
sequence variants outperformed the 50k-SNP genotypes combined with selected sequence variants.
Coefficients of regression of adjusted phenotypes on GBV are shown in Table 2 for purebred and
crossbred Merino validation subsets, which indicate lower bias of GBV based on using all sequence
variants or selected sequence variants combined with 50k genotypes. A notably higher bias was
observed when using only selected sequence variants.
In this study the GWAS data subset was selected to be multi-breed and higher accuracy was observed
for both purebred and crossbred Merino sheep when selected sequence variants were included in
genomic prediction. This result could be partly due to Merino being the dominant breed in the data
(purebred and crossbred). In the case of SF5, genomic prediction accuracy decreased with the addition
of selected sequence variants to 50k genotypes which could be related to the lower power of GWAS in
SF5 due to smaller sample size.
This study showed a small improvement in genomic prediction accuracy using all sequence data
compared to 50k genotypes. Marginal improvement in accuracy from using all WGS variants is in line
with several other studies in cattle (e.g. van Binsbergen et al., 2015) and could be because of the
difference in genomic relationships among animals based on 50k or all sequence variants. In this study,
using the CFAT data set as an example, the correlation between the elements of the genomic
relationship matrix based on using all sequence SNP variants versus only 50k genotypes was high and
equal to 0.976.
Regression coefficients of adjusted phenotypes were lower than one in most cases, which shows GBVs
are over-dispersed. The results also show more bias for traits with low prediction accuracy including
IMF and SF5 which could be related to smaller size of both training and validation data subsets for
those traits.

Table 1. Genomic prediction training sub set size, phenotypic mean (standard deviation), additive genetic
variance and heritability based on GBLUP using 50k, WGS data and 50k plus selected variants.

Trait size1 Phenotypic Mean (sd)2 Va,50k Va,WGS Va,(50k,sel-variants) h250k h2WGS h2 (50k,sel-variants)

PWT (kg) 11,067 46.70 (13.10) 6.97 8.62 5.37 , 2.04 0.21 0.25 0.16 , 0.06

PEMD (mm) 9,715 26.34 (4.65) 1.06 1.36 0.75 , 0.42 0.23 0.28 0.19 , 0.09

CEMD (mm) 7,714 29.56 (4.85) 1.38 1.70 1.22 , 0.30 0.16 0.19 0.14 , 0.03

CFAT (mm) 7,635 4.04 (2.27) 0.51 0.58 0.32 , 0.19 0.19 0.21 0.13 , 0.07

IMF (%) 6,353 4.35 (1.14) 0.26 0.30 0.23 , 0.05 0.38 0.42 0.33 , 0.07

SF5 (Newtons) 7,392 25.30 (14.05) 10.90 13.31 5.68 , 4.99 0.24 0.29 0.14 , 0.11
1: population size, 2: phenotypic mean and standard deviation, Va: additive genetic variance, PWT: post weaning weight, PEMD: post weaning eye muscle

depth, CEMD: carcass EMD, CFAT: carcass fat, IMF: intra muscular fat, SF5: shear force at day five, 50k: 50k-SNP genotypes, WGS: whole genome

sequence SNPs, sel-variants: selected sequence variants.

Figure 1. Accuracy of genomic prediction in purebred Merinos Figure 2. Accuracy of genomic prediction in crossbred Merinos
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1: Combined 50k genotypes and selected sequence varaiants fitted as one component. 2: 50k genotypes and selected sequence variannts fitted as two
separate components simoultanously.

Conclusion
This study demonstrated that imputed whole genome sequence data can be used to improve the
accuracy of genomic prediction in multi-breed sheep populations. Accuracy of prediction was increased
by about 5% on average when selected sequence variants were added to the common 50k genotype
array. GBLUP methods can best accommodate such selected variants by fitting them as a separate
variance component from the common 50k SNPs.

Table 2. Regression coefficient of adjusted phenotypes from GBV in purebred and crossbred Merino validation sets.

Purebred Merinos Crossbred Merinos

Trait 50k WGS Sel-Variants 50k+Sel-Variants 50k WGS Sel-Variants 50k+Sel-Variants

PWT 0.92 0.91 1.14 1.06 0.89 0.89 0.80 0.88

PEMD 0.87 0.90 0.74 0.88 0.92 0.95 0.68 0.84

CEMD 0.89 0.88 0.70 0.77 1.14 1.00 0.69 1.62

CFAT 1.06 1.10 0.61 0.91 0.36 0.72 1.44 1.07

IMF 0.51 0.49 0.44 0.50 0.85 0.88 0.84 0.88

SF5 0.34 0.46 0.61 0.35 0.64 0.56 1.44 0.65
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