Towards more uniform pig performance

Craig Lewis and Susanne Hermesch
Variability: The issue...

- Cost to industry $
- Stabilise the supply chain
 - Targeting the main traits that increase variability
- Maximise *pig numbers* and *growth* of pigs

‘*consistent performance to guarantee consistent supply of pork*’
Variability: Statistical definition

- Average or ‘Mean’
- Spread or ‘Standard deviation’

Histogram of Trait

N

Trait
Variability: Statistical definition

Medium SD

High SD

Low SD
Variability: Statistical definition

Medium SD

High SD

Low SD
Variability: Statistical definition

- Medium SD
- High SD
- Low SD

Normal Distribution
Variability: Statistical definition: It means...

- Mean \pm 1 SD = 68.2 %
- Mean \pm 2 SD = 95.4 %
- Mean \pm 3 SD = 99.6 %

- EXAMPLE

- Farm mean Backfat = 11 & SD = 1 mm
- Penalty if Backfat greater than 12 mm
- 15.9 % of pigs will invoke penalty
Variability: The issue...

- Be aware!
 Mean and standard deviation linked!

- The SD will increase with a larger mean
 - This is called the ‘scaling effect’
Variability: What the issue means

- For **Backfat**
 - Lower backfat means less variation

- For **Growth**
 - If you want less variation *reduce the Mean*
 - **NOT IDEAL**
 - Can we increase the mean and:
 - Not increase the SD
 - Perhaps decrease the SD
Variability: Tackling the issue genetically

- General GOAL in breeding:

 ‘Can we favourably move the mean without detrimentally moving variability?’

- More specifically:

 ‘Can we breed for more uniform performance within a specific environment?’
Uniformity: The theory

A simple animal model:

\[y_i = X\beta + Z_1a_i + e_i \]
Uniformity: The theory

A simple animal model:

\[y_i = X\beta + Z_1a_i + e_i \]

- Trait
- Fixed effects
- Animal (genetic)
- ‘Error’
Uniformity: The theory

A simple animal model:

\[y_i = X\beta + Z_1 a_i + e_i \]

- Error or ‘environmental’ component
 - Reflects the within-environmental and temporal sensitivity of the animals
Uniformity: Question

‘Is there genetic variation in the residual component?’

‘Are there genetic differences between sires in the residual (error) variation of their progeny?’
Uniformity: Basic two-step process

Use performance traits from multiple progeny of selected sires

Model One: (Use trait)
Estimate genetic (mean) and error effects

Model Two: (Use transformed error)
Estimate genetic effects for variation

Output of Model One & Two:
Estimated Breeding Values for mean and variance
Uniformity: Genetics conclusion

- The theory is still being developed

- Major data issues: ‘quality and quantity’!!!

- Hill and Mulder (2010) review show limited opportunities to select for reduced variation
 - Median h^2_V for pig traits = 0.03
 - Moderate GCV_E but unattainable currently
Variability: To the farm

- GOAL at the farm:

‘Can we identify and reduce variability at the farm level?’
Variability: Farm level: The causes

- Temporal – within and between year
- Breeds
- Herds – Location
- Sex
- Parity
- Age... – Management!
- Birth litter
- Genetics
- Etc etc etc.....
Variability: Trends

- Selection has improved traits
 - What has this genetic improvement done to variation?

- Data from National Pig Improvement Program
 - 15 years of records
 - 11 herds
 - 3 breeds
 - ~400,000 production records
 - ~85,000 reproductive records
Variability: Yearly trends: Production

Backfat

Lifetime growth

Corrected for end weight

~0.8mm

~80g/day
Variability: Yearly trends: Production SD

Backfat

lifetime growth

See APSA 2011
Variability: Yearly trends: Reproduction

NBA

0.3 piglets

Year

piglets
Variability: Yearly trends: Reproduction SD
Variability: Within year trends: Production

Backfat

Lifetime growth

Backfat Trends

- Corrected for end weight

Growth Trends
Variability: Where is the variation from?

- Between and within year shown
- Quantification of ALL sources of variation
 - Used NPIP data once again
 - Examination of sources of variation
Variability: Proportion explained by each factor

<table>
<thead>
<tr>
<th>Source</th>
<th>Backfat</th>
<th>Growth</th>
<th>NBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Month</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Year/month</td>
<td>3</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Breed</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Herd</td>
<td>12</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Sire</td>
<td>22</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>Litter</td>
<td>36</td>
<td>39</td>
<td>-</td>
</tr>
<tr>
<td>Weight</td>
<td>11</td>
<td>37</td>
<td>-</td>
</tr>
<tr>
<td>Gestation length</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
</tbody>
</table>
Variability: Total

- Total variation explained is not cumulative!
 - Variance partitioning, confounding, non-balanced

- Best model explains only around 50% of variability

- Higher variation explained for performance traits than reproductive traits
 - Backfat = 47%, Growth = 41%
 - NBA = 29%
Variability: Summary

- Farm and packers say variation needs to reduce
 - Reduce costs – improve profitability

- Currently, no genetic solution
 - Use selection on the mean
 - Control variation on farm...
Variability: Summary (2) – what you can do

- Controlling variation *on farm*
 - Use sire EBVs (mean) for more uniform groups
 - Optimal environment for each pig
 - Consistent long-term management strategy
 - Consistency of inputs
Variability: Summary (3) – what we can do

- Further **quantification of the variation** will help!
- Best models only explain **50%** of the variation
 - *Less for reproductive traits*
- Better **definition of environments** required
 - *In association* with accurate phenotypes & contemporary groups on farm
Thank you for your time.

Thank you to breeders who provided data
This work was supported by APL (Project 2133)