Genetic analyses of haemoglobin levels in pigs and iron content in pork

Susanne Hermesch and Rob M Jones

AGBU webinar, 15 February 2012

Acknowledgements

- Kristy Tickle, Rivalea
- Helen Grigg, Rivalea
- David Paynter, Regional Laboratory Services
- Heather Channon, Australian Pork Limited

Large variation in mean iron content (mg/kg)

	Mean	Range
Pork	6.3	3 - 30
Chicken	5.5	4 - 54
Sheep	11	17 - 36
Beef	18	13 - 61

(Rooke et al. 2010, J. Agric. Sci. 148:603-614)

Iron content in pork has declined

- Total pigment content in *biceps femoris (BF) and longissimus dorsi (LD)* (Barton-Gade, 1990, 4th WCGALP, XV 511-520)
 - BF: 1984: 40.8 vs. 1988: 32.9 (19% reduction)
 - LD: 1986: 21.3 vs. 1988: 18.8 (12% reduction)

Large difference in pigment content between muscles

Iron content in pork has declined

- Australian studies (*m. longissimus dorsi*)
 - Greenfield et al. (2009)
 - Barnes et al. (1996)
 - Hutchison et al. (1987)

4.60 mg / kg 8.00 mg / kg

7.00 mg / kg

"Pork can no longer be promoted as a source of iron"

(Greenfield et al. 2009, Food Chemistry 117:721-730)

Research was needed to improve iron levels in pork

- Dietary avenues have not increased iron content in muscle (Cottam et al. 2007, APL report; Rooke et al. 2010)
 - Iron is not stored in muscle, excess is excreted or stored in liver
- Pigment was heritable
 - in pork (0.39 ± 0.09, Larzul et al. 1997, J. Anim. Sci. 75: 3126-3137)
 - in vivo (0.17 ± 0.02, Oksbjerg et al. 2004, Acta Agric. Scand. Sect. A
 Anim. Sci. 54: 187-192)
- Modern genotype had lower myoglobin content than pigs available in 1970s (Oksbjerg et al. 2000, Anim. Sci. 71: 81-92)

Serving Australia's Pig Industry"

Aims of project

- 1. Establish whether iron content in pork is heritable
- 2. Develop simple, cost-effective selection criteria for iron content in pork
 - On-farm measurement: haemoglobin levels in blood
 - Other pork quality traits: colour (L*, a*, b* Minolta chroma meter)
- 3. Determine whether current selection practices affect iron content in pork

Data recording

- September 2009 until January 2011
- Two sire lines
- Haemoglobin levels at five and 21 weeks
 HemoCue® equipment used on farm
- Iron and pork quality measures
 Iron: average of two replicates
- Growth rate, fat and muscle depth

Haematological data

Trait (unit, abbreviation)	Ν	Mean	SD	CV%
Haemoglobin, 5 weeks (g/L, HAEM5)	4 974	106.6	16.2	15
Haemoglobin, 21 weeks (g/L, HAEM21)	2 405	105.4	13.4	13
Iron content in pork (mg/kg, IRON)	2 253	2.87	0.44	15

SD: Standard deviation, CV%: Coefficient of variation

Measuring iron content in pork

- Duplicate samples were used
- Results from duplicate samples were expected to be within 10% of each other
- This aim was only achieved by
 - Increasing sample weight to 1 gram
 - Using of ceramic knives to prepare samples in lab

Use of steel knives increased iron content

- Use of steel knives during first 3 weeks mean iron content: 4.08 mg/kg
- Ceramic knives were used afterwards
 - mean iron content: 2.87 mg/kg
- Additional small trial (N: 20)
 - Steel knives: 4.04 mg/kg (sd: 0.73)
 - Ceramic knives:
- 3.15 mg/kg (sd: 0.45)

Plot of first against second measurement using either ceramic or steel equipment

Implications

- For measuring iron content in pork
 - Ceramic knives should be used for preparation of samples
- For any new measurement
 - Replicate measures should be taken to evaluate accuracy of new measurement

Genetic parameters from standard genetic analyses

"Serving Australia's Pig Industry"

Heritability and litter effect estimates for haematological traits

Trait	Heritability (h ²)	Litter effect (c ²)
Haemoglobin, 5 weeks	0.04	0.11
Haemoglobin, 21 weeks	0.09	0.08
Iron content in pork	0.34	0.06

Pork quality traits

Trait	Mean	SD	CV%	Heritability
L*	47.65	2.91	6	0.06
a *	5.62	0.95	17	0.41
b*	2.28	0.95	42	0.13
pH 45 minutes <i>p.m.</i>	6.03	0.26	4	0.23
pH at 24 hours <i>p.m.</i>	5.64	0.14	3	0.12

N: ~ 2,400 records for all traits; * all colour measurements were based on two replicates SD: Standard deviation, CV%: Coefficient of variation

Genetic associations between haematological traits

	Haemoglobin – 5 weeks	Haemoglobin – 21 weeks
Iron content in pork	0.39	0.50
Haemoglobin – 5 weeks		0.35

No genetic associations were found between haematological and performance traits

	Haemoglobin - 5 weeks	Haemoglobin - 21 weeks	Iron content
Backfat – live	-0.01	-0.34	-0.07
Fat depth – carcase	-0.04	-0.32	-0.17
Muscle depth – live	0.34	-0.03	-0.16
Muscle depth – carcase	0.38	0.02	-0.26
Growth rate	-0.26	-0.10	0.17

Does selection for efficient lean meat growth adversely affect iron content in pork?

Yes

- More efficient genotype had lower myoglobin levels than 1970s genotype (Oksbjerg et al. 2000)
- Claims: fast twitch muscle fibres have less iron

No

- Confounding of genotype with
 - pre-test housing
 - age
- Most genetic correlations b/w fibre types and pigment were not significant (Larzul et al. 1997)
 - Indirectly inferred genetic association b/w lean meat growth and pigment was favourable

Serving Australia's Pig Industry"

A joint unit of NSW DPI and UNE

Have <u>changes in husbandry practices</u> over time adversely affected iron content in pork?

Yes

Husbandry practices = G + E + GxE

- Slaughter day explained 36% of variation in iron content in pork (Tickle et al. 2011; APSA, P198).
- Selection has affected physiology of sows and pigs
 - Sow management and piglet housing
- Larger studies are required to reliably identify single factors

'Serving Australia's Pig Industry"

Evaluation of selection strategies

"Serving Australia's Pig Industry"

How much genetic gain is possible?

- Livestock breeding programs have achieved annual genetic gain of 10 to 20% of the genetic standard deviation of a trait (Hermesch, 2006, AGBU Pig Genetics Workshop)
- Equivalent of annual genetic gain in iron content in pork of 0.02 – 0.04 mg/kg
 - Given the mean and variation observed in this study
 - Higher genetic gain is expected in muscles with higher iron content due to scaling effects

Selection strategies

- Index calculation that included iron content as only breeding objective trait
 - No interactions with other traits for this evaluation of strategies
- Base scenario: recording iron content in one full sib (of selection candidate)
 - Response: 0.06 mg/kg iron (100%)
 - Costs: \$ 35 (100%)
- Alternative 1: Measuring colour traits in two full sibs
 - Response: 127%Costs: 43%

Selection strategies

- Base scenario: recording iron content in one full sib
 - Response: 0.06 mg/kg iron (100%)
 - Costs: \$ 35 (100%)
- Alternative 2: Measuring haemoglobin at 21 weeks on the selection candidate and seven full sibs
 - Response: 65% Costs: 57%
- Alternative 3: Same as alternative 2 but assuming a heritability of 0.27 for haemoglobin at 21 weeks
 - Response: 100% Costs: 57 %

Main conclusions

- Colour and haemoglobin levels at 21 weeks can be used as a selection criteria for iron content in pork and pork colour
 - On-farm recording procedures for haemoglobin levels need modification
- There were no unfavourable genetic associations
 between productivity and iron content in pork
- Any study about iron content in pork should use ceramic knives

Pork facts and recipes at: http://www.pork.com.au

